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Summary





The Fermat equation xn + yn = zn (including the Pythagorean case n = 2) expressed as the binomial expansions of x = mi + a, y = mj + b,  z = mk + c (x, y, z forming a primitive triple) and stated as





mU + an + bn = mZ + cn			(0 ( a,b,c < m)





should produce the integer solution for Z





U + (an + bn - cn)/m	= Z


U + r	= Z





When n is limited to prime values p, this solution can be reduced to finding integer solutions for





mp-1(ip + jp - kp) + r = pv			(integer factor v > 0)





which, using 





is = mis+1 + as+1	js = mjs+1 + bs+1	ks= mks+1 + cs+1	(1 ( s ( S; S: kS+1, cS+1 = 0)





can be reduced to a series of sub-problems





isp + jsp + Cs = ksp				(Cs = (pvs - rs)/mp-1)





leading to the equality





	- m0(p-1)pv1 - m2(p-1)pv2 - m4(p-1)pv3 - … - m(2S-2)(p-1)pvS = - m0(p-1)R1 - m1(p-1)R2 - m3(p-1)R3 - … - m(2S-3)(p-1)RS


									(Rs = asp + bsp - csp)





If p does not divide m, the application of Fermat’s Little Theorem to this last equality yields two congruencies





(1)				A1(m) + B1(m)	( C1(m) 		(mod p)





: represented base m, the sum of the digits of x plus the sum of the digits of y is congruent with the sum of the digits of z, mod p.  The second congruence





(2)				(a1p + b1p - c1p)/m	( a1 + b1 - c1	(mod p)





where the subscript 1 indicates the lowest-order base m digit, is invalid for p > 2 but successful when p = 2, as shown using the primitive Pythagorean triple 3, 4, 5 worked out base 3 (p = 2, m = 3)





3 = 10(3) = x(3)	4 = 11(3) = y(3)	5 = 12 (3)





A1(3) + B1(3)	( C1(3) 				(a1p + b1p - c1p)/3	( a1 + b1 - c1


1 + 2		( 3		(mod 2)		(02 + 12 - 22)/3	( 0 + 1 - 2


1	( -1		(mod 2)


�
Extended Summary





The Fermat equation for prime powers (including 2)





xp + yp = zp





where x, y, z form a primitive triple with the variables relatively prime in pairs, can be restated as sums of binomial expansions of





x = mi + a	y = mj + b	z = mk + c		(0 ( a,b,c < m)





to give





(1)					mU1 + ap + bp = mZ1 + cp





Using the case p = 3 (for simplicity) to illustrate this method of representing the variables





z3	= (mk)3 + 3(mk)2c + 3(mk)c2 + c3


					= m(m2k3 + m(3)k2c + 3kc2) + c3


	= mZ1 + c3





x3	= mX1 + a3


y3	= mY1 + b3


x3 + y3	= mU1 + a3 + b3	(U used generically to symbolize a sum of expansions)





Eq. 1 should satisfy the congruence





mU1 + ap + bp ( mZ1 + cp	(mod m)





and allow the integer solution for Z1





U1 + (ap + bp - cp)/m	= Z1


U1 + R/m	= Z1


U1 + r	= Z1





The terms U1 and Z1 can be expanded further (again illustrating with the case p = 3) to give 





mU2 + 3a2i + 3b2j + r	= mZ2 + 3c2k


m(U2 - Z2) + r	= 3c2k - 3a2i - 3b2j





which can be viewed as a linear expression of i, j, and  k on the RHS whose integer solution requires that p, in the form of the binomial coefficient C(3,2), divide the LHS.  Stated generally





m(U2 - Z2) + r	= C(p,p-1)cp-1k - C(p,p-1)a p-1i - C(p,p-1)b p-1j


		= pcp-1k - pa p-1i - pb p-1j





As U2 and Z2  consist of the remaining terms of the binomial expansions of x, y, and z, the prime p divides the binomial coefficients of all these terms except the coefficient C(p,p) on terms of ip, jp, and kp, allowing the problem to be reduced to finding integer solutions to





mp-1(ip + jp - kp) + r = pv			(integer factor v > 0)





or





i1p + j1p + C1= k1p				(z/8 ( k1 > j1 ( i1 if y > x; C1 = (pv1 - r1)/mp-1)





a variation of the original problem and the first in a series of sub-problems using





x = mi1 + a1	y = mj1 + b1	z = mk1 + c1


i1 = mi2 + a2	j1 = mj2 + b2	k1= mk2 + c2


…		…		…


iS = miS+1 + aS	jS = mjS+1 + bS+1	kS = mkS+1 + cS+1	(S: kS+1, cS+1 = 0; 1 ( s ( S)





that are then solved for K





U1s + (Rs - Cs-1)/m			= K1s


U1s + ((asp + bsp - csp) - Cs-1)/m	= K1s





leading to the equality





(2)		- m0(p-1)pv1 - m2(p-1)pv2 - m4(p-1)pv3 - … - m(2S-2)(p-1)pvS = - m0(p-1)R1 - m1(p-1)R2 - m3(p-1)R3 - … - m(2S-3)(p-1)RS





When x, y, and z are repeatedly subdivided by m in the manner shown above, the remainders as, bs, and cs are the digits of the base m representations of x, y, and z, with the subscript 1 indicating the lowest-order digit.





If p does not divide m, the application of Fermat’s Little Theorem to Eq. 2 gives





0	( - (aSp + bSp - cSp) - (aS-1p + bS-1p - cS-1p) - … - (a1p + b1p - c1p)


		( - aS  - bS + cS - aS-1 - bS-1 + cS-1 - … - a1 - b1 + c1


( - (aS + aS-1 + … + a1) - (bS + bS-1 + … + b1) + (cS + cS-1 + … + c1)


( - A1(m) - B1(m) + C1(m)


(3)	A1(m) + B1(m)	( C1(m)		(mod p)





: represented base m, the sum of the digits of x plus the sum of the digits of y is congruent with the sum of the digits of z, mod p.





Each term pvs on the LHS of Eq. 2 expands as





mp-1(isp + jsp - ksp) + (Rs - Cs-1)/m	= mp-1(isp + jsp - ksp) + (Rs - (isp + jsp - ksp))/m		(C0 = 0)





The application of the Little Theorem reduces all of these terms except the first to 0.  Using 





A2(m)	= aS + aS-1 + … + a2	= A1(m) - a1


B2(m)	= bS + bS-1 + … + b2	= B1(m) - b1


C2(m)	= cS + cS-1 + … + c2	= C1(m) - c1





the term - pv1 expands (via the Little Theorem) to





- A2(m) - B2(m) + C2(m) - r1	= - A2(m) - B2(m) + C2(m) - R1/m


= - A2(m) - B2(m) + C2(m) - (a1p + b1p - c1p)/m





Making the distinction E1 = a1 + b1 - c1 versus R1 = a1p + b1p - c1p, these results combine as





- A2(m) - B2(m) + C2(m) - r1	( - A1(m) - B1(m) + C1(m)		


( - A2(m) - B2(m) + C2(m) - E1


r1	( E1


(4)				(a1p + b1p - c1p)/m	( a1 + b1 - c1	(mod p)





the smallest bases assuring that p not divide m would represent cases of Fermat p > 2 base 2 and the case p = 2 base 3  For the problems p > 2 involving primitive triples, the values satisfying





2U1 + a1p + b1p ( 2Z1 + c1p		(mod 2)





(adopting a convention of xp mod m < yp mod m, otherwise x < 
