Draw or print a 15 by 15 multiplication square.
Pick any 2 by 2 square and add the numbers on each diagonal. For example, if you take:

32	36
40	45

the numbers along one diagonal add up to $77(32+45)$ and the numbers along the other diagonal add up to $76(36+40)$.

Try a few more examples.
What do you notice?
Can you show (prove) that this will always be true?
Now pick any 3 by 3 square and add the numbers on each diagonal.
For example, if you take:

72	84	96
78	91	104
84	98	112

the numbers along one diagonal add up to $275(72+91+112)$ and the numbers along the other diagonal add up to $271(84+91+96)$.

Try a few more examples.
What do you notice this time?
Can you show (prove) that this will always be true?
Now pick any 4 by 4 square and add the numbers on each
diagonal. Try a few examples.
What do you notice now?
Can you show (prove) that this will always be true?
Can you predict what will happen if you pick a 5 by 5 square, a 6 by 6 square ... an n by n square, and add the numbers on each diagonal?

Can you prove your prediction?

