By Pythagoras theorem
AB2=3, BC2=2, AC2=5, BD2=5, AD2=10
Method 1
In \triangle ABC we have AB2+BC2=AC2 so, by the converse of Pythagoras Theorem, ÐABC = 90o

Clearly \triangle ABD is not a right angles triangle but we can use the Cosine Rule to find ÐABD.
cosÐABD = 3 + 5 - 10
2Ö3 Ö5
= -1
Ö15
so ÐABD = 104.963o or approx. 105 degrees.

Method 2

®
BA
 
= (-1, -1, -1)   ®
BC
 
= (1, 0, -1),  ®
BD
 
= (2, 0, -1)
so, using the scalar product,
®
BA
 
. ®
BC
 
= 0

and so ÐABC = 90o.

For angle ABD:
®
BA
 
. ®
BD
 
= -1 = Ö3 Ö5 cosÐABD
Hence
ÐABD = cos-1 -1
Ö15
= 105o
to the nearest degree.