Good solutions were sent in by Thomas Lauffenberger, Angus
Balkham of Bexhill College and Andrei Lazanu of School No. 205,
Bucharest, Romania.
Here is Andrei's soluton:
Two things are to be observed for solving this problem:
1) the angle $\alpha$ between two vectors ${\bf a}$ and ${\bf b}$
can be determined from their scalar product as follows: $$\cos
\alpha = {{\bf a}.{\bf b}\over ab}$$ where a and b are the moduli
of the vectors.
2) On Earth approximated with a sphere, if one knows the latitude
and longitude of a point (city), the vectors with the origin in
the centre of the Earth and ending in the respective city are
completely determined.
The position on a sphere is usually described using the spherical
coordinates: - the azimuthal angle, the angle in the xOy plane,
and, the polar angle, from the z axis, as illustrated
below:
On the sphere
is fixed, and I'll first work on the unit
sphere. For the problem, the azimuthal angle gives the longitude,
while the polar angle is (
- latitude).
The relation between the spherical coordinates and the Cartesian
ones on the unit sphere is:
For London, angle
is (
-
), i.e.
and angle
is 0°. So, its coordinates are:
For Cape Town angle
is
and angle
is
. Its coordinates are:
The scalar product of the two vectors characterised by their
Cartesian coordinates:
and
is
The product of the vectors corresponding to London and Cape Town
is:
So, if angle
has its cosine value 0.0447754018, then its
measure is
.
Each two points of a sphere are on a big circle of the sphere,
having as centre the centre of the sphere. The angle between these
points is the angle determined above.
The circumference of the Earth (considering it is a sphere) is:
km
This value corresponds to
87.43370046
corresponds the following distance in kilometres:
which we round to 9716 km.
I looked in Encarta and I found that the distance between the two
cities is 9689 km, so the approximation is very good.
The distance traveled by the plane is a circular arc, with radius
6373 km. Applying a similar procedure, I observe that the plane
traveled 9725.2359 km.
The formula for obtaining the speed is v = d/t, where d is the
distance and t - the time. So, the average speed is 884 km/h (to 3
significant figures), a value that is again reasonable.