1. T am sure there’s perhaps a faster way of doing this but this is the solution I found. Firstly, we
can attempt a little prime factorisation to notice that 24 | a <= 23,3 | a. So, we can develop
a two pronged attack onto this proof - one to prove that our expression is divisible by 8 and
one to show it is divisible by 9.

Factorising n® —n? we get n3(n+1)(n—1). Slipping in an n we get n?((n—1)(n)(n+1)). That
inside bracket is the product of three consecutive numbers which is always divisible by three.
This can be done quite easily if you think about it, a multiple of 3 occurs every 3 numbers thus
over the span of 3 consecutive numbers at least one of them is a multiple of 3 thus the product
of those consecutive numbers must be divisible by 3.

To prove everything was divisble by 8, I took quite the boring method. Case one is that n was
even = n = 2q, ¢ € N = (2¢)3((4¢®) — 1) = 8¢3(...) thus it holds for even values. If n is odd
= n = 2¢+1= (2¢+1)3(2¢4+2)(2q) = 8(4¢°+10¢*+9¢3+28¢%+4q) +28¢%*+4q = 8(r)+4(7¢*+1)
, 7 € N.We use a very similar idea to prove that 4(7¢ + 1) is always divisible by 8 which is
simple as all we need to really prove is (7¢? + 1) is always even and then factor out a 2 to get
an 8. If ¢ is even we get odd + 1 = even and if ¢ is odd we get the same result.

Thus 24 | n® —n3, ¥n € N

2. This proof can be done quite nicely via induction ( a rather lovely tool ). First, we assume a
base case - for this question, our base case is n = 1 since our statement holds for all positive

integers. We can then attempt to prove our base case which is rather simple for this question.
221 —1=3.

Now, we take a rather bold move where we assume that 3 | 22 —1 for some k € N = 22¢ —1 = 3¢
for some ¢ € N. The notation may look intimidating at first if you haven’t seen it before but all
it says that the 22 —1 is divisible by 3 which means it can be written as 3¢ where ¢ is an integer.

This may seem pointless at first but it will be helpful when analyse the next case for n = k+1,
22(k+1) _ 1. We can use the law of indices to help re write our expression as 22-2% —1. Now, we
simply factor out a 4 but naturally you may be scared to do so because we can’t easily pull out
a 4 from that —1 can we ? Well say we did anyways, and we had 4(2¥ — 1) and we expanded
it all out, we’d get 4 - 28 — 4 which is almost what we had before ! Ah-ha, you might notice
all we have to do is add three and we get back what we had. So, for n = k-+1 we get, 4(2¥—1)+3

This is where the magic happens. Remember that almost random step we did in the 2nd
paragrah - well look inside that bracket, it’s our case for n = k so we can rewrite it again as
4(3q) + 3 which is simply 3(4¢q + 1).

This is when we have to use some logic, if we proved the statement to be true for n = 1
and we assumed it to be true for n = k and using that result we proved that it’s true for
n = k + 1 then it must be true Vn € N

3. Firstly, we can notice that if 3| n—1=n —1=3q, ¢ € N. Thus, n = 3¢ + 1. If we attempt
to directly plug this into our n® — 1 We get (3¢ + 1) — 1 which if we expand it all out gives us
27n3 +27n% + 9n + 1 — 1 then 9(3n® 4 3n? + 1) which is clearly divisble by 9.



