
1. I am sure there’s perhaps a faster way of doing this but this is the solution I found. Firstly, we
can attempt a little prime factorisation to notice that 24 | a ⇐⇒ 23, 3 | a. So, we can develop
a two pronged attack onto this proof - one to prove that our expression is divisible by 8 and
one to show it is divisible by 9.

Factorising n5−n3 we get n3(n+1)(n−1). Slipping in an n we get n2((n−1)(n)(n+1)). That
inside bracket is the product of three consecutive numbers which is always divisible by three.
This can be done quite easily if you think about it, a multiple of 3 occurs every 3 numbers thus
over the span of 3 consecutive numbers at least one of them is a multiple of 3 thus the product
of those consecutive numbers must be divisible by 3.

To prove everything was divisble by 8, I took quite the boring method. Case one is that n was
even ⇒ n = 2q, q ∈ N ⇒ (2q)3((4q2) − 1) = 8q3(...) thus it holds for even values. If n is odd
⇒ n = 2q+1⇒ (2q+1)3(2q+2)(2q) = 8(4q5+10q4+9q3+28q2+4q)+28q2+4q = 8(r)+4(7q2+1)
, r ∈ N.We use a very similar idea to prove that 4(7q2 + 1) is always divisible by 8 which is
simple as all we need to really prove is (7q2 + 1) is always even and then factor out a 2 to get
an 8. If q is even we get odd + 1 = even and if q is odd we get the same result.

Thus 24 | n5 − n3, ∀n ∈ N

2. This proof can be done quite nicely via induction ( a rather lovely tool ). First, we assume a
base case - for this question, our base case is n = 1 since our statement holds for all positive
integers. We can then attempt to prove our base case which is rather simple for this question.
22(1) − 1 = 3.

Now, we take a rather bold move where we assume that 3 | 22k−1 for some k ∈ N⇒ 22k−1 = 3q
for some q ∈ N. The notation may look intimidating at first if you haven’t seen it before but all
it says that the 22k−1 is divisible by 3 which means it can be written as 3q where q is an integer.

This may seem pointless at first but it will be helpful when analyse the next case for n = k+1,
22(k+1)−1. We can use the law of indices to help re write our expression as 22 ·2k−1. Now, we
simply factor out a 4 but naturally you may be scared to do so because we can’t easily pull out
a 4 from that −1 can we ? Well say we did anyways, and we had 4(2k − 1) and we expanded
it all out, we’d get 4 · 2k − 4 which is almost what we had before ! Ah-ha, you might notice
all we have to do is add three and we get back what we had. So, for n = k+1 we get, 4(2k−1)+3

This is where the magic happens. Remember that almost random step we did in the 2nd
paragrah - well look inside that bracket, it’s our case for n = k so we can rewrite it again as
4(3q) + 3 which is simply 3(4q + 1).

This is when we have to use some logic, if we proved the statement to be true for n = 1
and we assumed it to be true for n = k and using that result we proved that it’s true for
n = k + 1 then it must be true ∀n ∈ N

3. Firstly, we can notice that if 3 | n− 1 ⇒ n− 1 = 3q, q ∈ N. Thus, n = 3q + 1. If we attempt
to directly plug this into our n3 − 1 We get (3q+1)3 − 1 which if we expand it all out gives us
27n3 + 27n2 + 9n+ 1− 1 then 9(3n3 + 3n2 + 1) which is clearly divisble by 9.


