Investigation of the Koch Snowflake

Tai Cho (Thatcher) Lai
Rugby School, School Field, F Block
December 12, 2022

Abstract

This paper explores the geometry and the behind one of the most famous fractals of all time - the Koch Snowflake. This paper also explores the concepts of infinity and limits, and how all these with the Koch Snowflake together lead to a beautiful result in the end.

Keywords: Geometry, fractals, Koch Snowflake, infinity, limits.

1 Introduction to the Koch Snowflake

The Koch Snowflake is a type of fractal; fractals are geometric figures that has a repeated pattern that goes on forever (usually approaches a limit of some value), and the patterns formed within it are self-similar. Meaning, when zooming into different parts of a fractal, the image is very similar to the image of the fractal itself. They are made by iterative processes. The Koch Snowflake is made as such:

1. Start by constructing an equilateral triangle with side length s. Let us call this figure K_{0}.
2. Divide each of the sides of the equilateral triangle into 3 equal parts, forming side lengths of $\frac{1}{3} s$.
3. Draw an equilateral triangle on each of the sides, with the base as the middle segment of lengths $\frac{1}{3} s$ from figure K_{0} and erase the base segment. Let us call this newly formed figure K_{1}.
4. Repeat steps 2 and 3 , but with different side lengths, namely, $\frac{1}{3^{n}} s$, where n is the number of times steps 2 and 3 are repeated. Thus, let K_{n} represent the Koch Snowflake after repeating steps 2 and $3 n$ times.

2 Perimeter of the Koch Snowflake

Let us now create a table showing the number of iterations (n), the side length $\left(s_{n}\right)$, the number of sides $\left(m_{n}\right)$, and the perimeter $\left(p_{n}\right)$ of the Koch Snowflake using the information above:

Number of Iterations (n)	Side Length $\left(s_{n}\right)$	Number of Sides $\left(m_{n}\right)$	Perimeter $\left(p_{n}\right)$
0	1	3	3
1	$1 / 3$	12	4
2	$1 / 9$	48	$16 / 3$
3	$1 / 27$	192	$64 / 9$
4	$1 / 81$	768	$256 / 27$
5	$1 / 243$	3072	$1024 / 81$

Table 1: List of values for n, s, m, and p.
As we can see, the side length of K_{n} decreases by $\frac{2}{3}$ of the previous side length of K_{n}. The number of sides of K_{n} increases by 4 times the previous number of sides of K_{n}. The perimeter of K_{n} increases by $\frac{4}{3}$ times the pervious perimeter of K_{n}. Let us now express, algebraically, s_{n}, m_{n}, and p_{n} :

$$
\begin{gather*}
s_{n}=\frac{1}{3^{n}} \tag{2.1}\\
m_{n}=3\left(4^{n}\right) \tag{2.2}\\
p_{n}=3 s\left(\frac{4}{3}\right)^{n} \tag{2.3}
\end{gather*}
$$

It is fairly obvious to see that the following limit converges to 0 :

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{3^{n}}=0 \tag{2.4}
\end{equation*}
$$

And that this limit diverges to infinity:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 3\left(4^{n}\right)=\infty \tag{2.5}
\end{equation*}
$$

Note that this limit also diverges to infinity:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 3 s_{0}\left(\frac{4}{3}\right)^{n}=\infty \tag{2.6}
\end{equation*}
$$

The perimeter grows exponentially as there are more iterations due to the fact that $\frac{4}{3}$ is greater 1 , thus every time we multiply $\frac{4}{3}$ by itself, there is an increase in value.

3 Area of the Koch Snowflake

From the expressions above, we know that the number of sides multiplies by 4 after each iteration, and that the side length decreases by $\frac{2}{3}$ of the previous side length $\left(\frac{1}{3^{n}}\right)$. So, the area of the smaller triangles formed after each iteration is $\left(\frac{1}{3}\right)^{2}$, or $\frac{1}{9}$ of the area of the previous triangle.

Look at the table below:

Number of Iterations (n)	Number of Smaller Triangles Added $\left(u_{n}\right)$	Number of Sides $\left(m_{n}\right)$
0	0	3
1	3	12
2	12	48
3	48	192
4	192	768
5	768	3072

Table 2: List of values for n, u, and m.
Recall Eq.(2.2), where: $m_{n}=3\left(4^{n}\right)$, we can also apply this to the following observation: For every K_{n}, there are $3\left(4^{n-1}\right)$ smaller triangles added to the previous Koch Snowflake, that is, for $n \geq 1$, which can be written like this:

$$
\begin{equation*}
u_{n}=3\left(4^{n-1}\right)=\frac{3}{4} \times 4^{n} \tag{3.1}
\end{equation*}
$$

Also recall that the area of the smaller triangles added is $1 / 9$ of the previous area of triangles. So, to calculate the area that is added onto the original triangle after each iteration, we simply multiply $u,\left(\frac{1}{9}\right)^{n}$, and A_{0} (the original area of the triangle, which we define to be 1 here) together, as u determines the number of triangles that are added, and $\left(\frac{1}{9}\right)^{n}$ determines the fraction of area of the new triangles that are formed after each iteration:

$$
\begin{equation*}
A_{n}=3\left(4^{n-1}\right) \times\left(\frac{1}{9}\right)^{n} \times A_{0} \tag{3.2}
\end{equation*}
$$

For example, if we were to find the area of, say, K_{3}, we can write this as:
$A_{3}=A_{0}+\left[3\left(4^{0}\right) \times\left(\frac{1}{9}\right)^{1} \times A_{0}\right]+\left[3\left(4^{1}\right) \times\left(\frac{1}{9}\right)^{2} \times A_{0}\right]+\left[3\left(4^{2}\right) \times\left(\frac{1}{9}\right)^{3} \times A_{0}\right]+\left[3\left(4^{3}\right) \times\left(\frac{1}{9}\right)^{4} \times A_{0}\right]$

Simply further and we get:

$$
\begin{equation*}
A_{3}=A_{0}+\frac{3\left(4^{0}\right)}{9^{1}} A_{0}+\frac{3\left(4^{1}\right)}{9^{2}} A_{0}+\frac{3\left(4^{2}\right)}{9^{3}} A_{0}+\frac{3\left(4^{3}\right)}{9^{4}} A_{0} \tag{3.4}
\end{equation*}
$$

Here, we can factor out A_{0} and $\frac{3}{9}$ separately, then simplify again to get:

$$
\begin{gather*}
A_{3}=A_{0}\left(1+\frac{1}{3}\left[\left(\frac{4}{9}\right)^{0}+\left(\frac{4}{9}\right)^{1}+\left(\frac{4}{9}\right)^{2}+\left(\frac{4}{9}\right)^{3}\right]\right) \tag{3.5}\\
A_{3}=A_{0}\left[1+\frac{1}{3} \sum_{k=0}^{3}\left(\frac{4}{9}\right)^{k}\right] \tag{3.6}
\end{gather*}
$$

Now, we can write the formula for finding the area of the Koch Snowflake - using Eq.(3.6) - after k iterations:

$$
\begin{equation*}
A_{k}=A_{0}\left[1+\frac{1}{3} \sum_{i=0}^{k}\left(\frac{4}{9}\right)^{i}\right] \tag{3.7}
\end{equation*}
$$

Let us now construct a table showing the number of iterations, number of smaller triangles added. area added, and the total area after k iterations of the Koch Snowflake:

Number of Iterations (n)	Number of Smaller Triangles Added $\left(u_{n}\right)$	Area Added $\left(A_{n}\right)$	Total Area $\left(A_{k}\right)$
0	0	0	1
1	3	$1 / 3$	$4 / 3$
2	12	$4 / 27$	$40 / 27$
3	48	$16 / 243$	$376 / 243$
4	192	$64 / 2187$	$3448 / 2187$
5	768	$256 / 19683$	$31288 / 19683$

Table 3: List of values for n, u_{n}, A_{n}, and A_{k}.
Let us now find the limit of the area of the Koch Snowflake, which is this expression here:

$$
\begin{equation*}
\lim _{k \rightarrow \infty} A_{k}=A_{0}\left[1+\frac{1}{3} \sum_{k=0}^{\infty}\left(\frac{4}{9}\right)^{k}\right] \tag{3.8}
\end{equation*}
$$

We shall now find the sum: $\sum_{i=0}^{k}\left(\frac{4}{9}\right)^{i}$ and use it to calculate the limit of the area of the Koch Snowflake, given A_{0}. Geometric series are expressed as such, where a is some coefficient for all terms r, and r is some constant factor:

$$
\begin{equation*}
s=a+a r^{1}+a r^{2}+a r^{3}+a r^{4}+a r^{5}+\ldots \tag{3.9}
\end{equation*}
$$

Then, dividing by a on both sides, we get:

$$
\begin{equation*}
\frac{s}{a}=1+r^{1}+r^{2}+r^{3}+r^{4}+r^{5}+\ldots \tag{3.10}
\end{equation*}
$$

Multiplying by r on both sides, we get:

$$
\begin{equation*}
\frac{s r}{a}=r^{1}+r^{2}+r^{3}+r^{4}+r^{5}+r^{6}+\ldots \tag{3.11}
\end{equation*}
$$

And by subtracting Eq.(3.11) from Eq.(3.10), we get:

$$
\begin{equation*}
\frac{s-s r}{a}=1 \tag{3.12}
\end{equation*}
$$

All the other powers of r cancel out, leaving 1 behind. We then factor out s and multiply both sides by a to get:

$$
\begin{equation*}
s(1-r)=a \tag{3.13}
\end{equation*}
$$

Finally, we get the formula for s :

$$
\begin{equation*}
s=\frac{a}{1-r} \tag{3.14}
\end{equation*}
$$

Now, let us plug in values for a and r, then plug s into the infinite sum in Eq.(3.8):

$$
\begin{gather*}
s=\frac{1}{1-\frac{4}{9}}=\frac{1}{\frac{5}{9}}=\frac{9}{5} \tag{3.15}\\
\left.\lim _{k \rightarrow \infty} A_{k}=A_{0}\left[1+\frac{1}{3}\left(\frac{9}{5}\right)\right]=A_{0}\left(1+\frac{9}{15}\right)=A_{0}\left(1+\frac{3}{5}\right)\right)=A_{0} \frac{8}{5} \tag{3.16}
\end{gather*}
$$

From here, we can see that the limit of the area of the Koch Snowflake as the number of iterations go to infinity, the result will be $8 / 5$ of the original area of the triangle.

