Investigation of the Koch Snowflake

Tai Cho (Thatcher) Lai Rugby School, School Field, F Block December 12, 2022

Abstract: This paper explores the geometry and the behind one of the most famous fractals of all time – the Koch Snowflake. This paper also explores the concepts of infinity and limits, and how all these with the Koch Snowflake together lead to a beautiful result in the end.

Keywords: Geometry, fractals, Koch Snowflake, infinity, limits.

1 Introduction to the Koch Snowflake

The Koch Snowflake is a type of fractal; fractals are geometric figures that has a repeated pattern that goes on forever (usually approaches a limit of some value), and the patterns formed within it are self-similar. Meaning, when zooming into different parts of a fractal, the image is very similar to the image of the fractal itself. They are made by iterative processes. The Koch Snowflake is made as such:

- 1. Start by constructing an equilateral triangle with side length s. Let us call this figure K_0 .
- 2. Divide each of the sides of the equilateral triangle into 3 equal parts, forming side lengths of $\frac{1}{3}s$.
- 3. Draw an equilateral triangle on each of the sides, with the base as the middle segment of lengths $\frac{1}{3}s$ from figure K_0 and erase the base segment. Let us call this newly formed figure K_1 .
- 4. Repeat steps 2 and 3, but with different side lengths, namely, $\frac{1}{3^n}s$, where *n* is the number of times steps 2 and 3 are repeated. Thus, let K_n represent the Koch Snowflake after repeating steps 2 and 3 *n* times.

2 Perimeter of the Koch Snowflake

Let us now create a table showing the number of iterations (n), the side length (s_n) , the number of sides (m_n) , and the perimeter (p_n) of the Koch Snowflake using the information above:

Number of Iterations (n)	Side Length (s_n)	Number of Sides (m_n)	Perimeter (p_n)
0	1	3	3
1	1/3	12	4
2	1/9	48	16/3
3	1/27	192	64/9
4	1/81	768	256/27
5	1/243	3072	1024/81

Table 1: List of values for n, s, m, and p.

As we can see, the side length of K_n decreases by $\frac{2}{3}$ of the previous side length of K_n . The number of sides of K_n increases by 4 times the previous number of sides of K_n . The perimeter of K_n increases by $\frac{4}{3}$ times the pervious perimeter of K_n . Let us now express, algebraically, s_n , m_n , and p_n :

$$s_n = \frac{1}{3^n}$$
(2.1)

$$m_n = 3(4^n)$$
 (2.2)

$$p_n = 3s(rac{4}{3})^n$$
 (2.3)

It is fairly obvious to see that the following limit converges to 0:

$$\lim_{n \to \infty} \frac{1}{3^n} = 0 \tag{2.4}$$

And that this limit diverges to infinity:

$$\lim_{n \to \infty} 3(4^n) = \infty$$
(2.5)

Note that this limit also diverges to infinity:

$$\lim_{n\to\infty} 3s_0(\frac{4}{3})^n = \infty$$
(2.6)

The perimeter grows exponentially as there are more iterations due to the fact that $\frac{4}{3}$ is greater 1, thus every time we multiply $\frac{4}{3}$ by itself, there is an increase in value.

3 Area of the Koch Snowflake

From the expressions above, we know that the number of sides multiplies by 4 after each iteration, and that the side length decreases by $\frac{2}{3}$ of the previous side length $(\frac{1}{3^n})$. So, the area of the smaller triangles formed after each iteration is $(\frac{1}{3})^2$, or $\frac{1}{9}$ of the area of the previous triangle.

Look at the table below:

Number of Iterations (n)	Number of Smaller Triangles Added (u_n)	Number of Sides (m_n)
0	0	3
1	3	12
2	12	48
3	48	192
4	192	768
5	768	3072

Table 2: List of values for n, u, and m.

Recall Eq.(2.2), where: $m_n = 3(4^n)$, we can also apply this to the following observation: For every K_n , there are $3(4^{n-1})$ smaller triangles added to the previous Koch Snowflake, that is, for $n \ge 1$, which can be written like this:

$$u_n = 3(4^{n-1}) = rac{3}{4} imes 4^n$$
 (3.1)

Also recall that the area of the smaller triangles added is 1/9 of the previous area of triangles. So, to calculate the area that is added onto the original triangle after each iteration, we simply multiply u, $\left(\frac{1}{9}\right)^n$, and A_0 (the original area of the triangle, which we define to be 1 here) together, as u determines the number of triangles that are added, and $\left(\frac{1}{9}\right)^n$ determines the fraction of area of the new triangles that are formed after each iteration:

$$A_n = 3(4^{n-1}) \star \left(\frac{1}{9}\right)^n \star A_0$$
 (3.2)

For example, if we were to find the area of, say, K_3 , we can write this as:

$$A_{3} = A_{0} + [3(4^{0}) \times (\frac{1}{9})^{1} \times A_{0}] + [3(4^{1}) \times (\frac{1}{9})^{2} \times A_{0}] + [3(4^{2}) \times (\frac{1}{9})^{3} \times A_{0}] + [3(4^{3}) \times (\frac{1}{9})^{4} \times A_{0}]$$
(3.3)

Simply further and we get:

$$A_3 = A_0 + rac{3(4^0)}{9^1}A_0 + rac{3(4^1)}{9^2}A_0 + rac{3(4^2)}{9^3}A_0 + rac{3(4^3)}{9^4}A_0$$
(3.4)

Here, we can factor out A_0 and $\frac{3}{9}$ separately, then simplify again to get:

$$A_{3} = A_{0}\left(1 + \frac{1}{3}\left[\left(\frac{4}{9}\right)^{0} + \left(\frac{4}{9}\right)^{1} + \left(\frac{4}{9}\right)^{2} + \left(\frac{4}{9}\right)^{3}\right]\right)$$
(3.5)

$$A_3 = A_0 [1 + rac{1}{3} \sum_{k=0}^3 {(rac{4}{9})}^k]$$
 (3.6)

Now, we can write the formula for finding the area of the Koch Snowflake – using Eq.(3.6) – after k iterations:

$$A_{k} = A_{0} \left[1 + \frac{1}{3} \sum_{i=0}^{k} \left(\frac{4}{9} \right)^{i} \right]$$
(3.7)

Let us now construct a table showing the number of iterations, number of smaller triangles added, area added, and the total area after k iterations of the Koch Snowflake:

Number of Iterations (n)	Number of Smaller Triangles Added (u_n)	Area Added (A_n)	$\begin{array}{c} {\rm Total \ Area} \\ (A_k) \end{array}$
0	0	0	1
1	3	1/3	4/3
2	12	4/27	40/27
3	48	16/243	376/243
4	192	64/2187	3448/2187
5	768	256/19683	31288/19683

Table 3: List of values for n, u_n , A_n , and A_k .

Let us now find the limit of the area of the Koch Snowflake, which is this expression here:

$$\lim_{k \to \infty} A_k = A_0 [1 + \frac{1}{3} \sum_{k=0}^{\infty} \left(\frac{4}{9}\right)^k]$$
(3.8)

We shall now find the sum: $\sum_{i=0}^{k} \left(\frac{4}{9}\right)^{i}$ and use it to calculate the limit of the area of the Koch Snowflake, given A_0 . Geometric series are expressed as such, where *a* is some coefficient for all terms *r*, and *r* is some constant factor:

$$s = a + ar^1 + ar^2 + ar^3 + ar^4 + ar^5 + \dots$$
(3.9)

Then, dividing by a on both sides, we get:

$$\frac{s}{a} = 1 + r^1 + r^2 + r^3 + r^4 + r^5 + \dots$$
(3.10)

Multiplying by r on both sides, we get:

$$\frac{sr}{a} = r^1 + r^2 + r^3 + r^4 + r^5 + r^6 + \dots$$
(3.11)

And by subtracting Eq.(3.11) from Eq.(3.10), we get:

$$\frac{s-sr}{a} = 1$$
(3.12)

All the other powers of r cancel out, leaving 1 behind. We then factor out s and multiply both sides by a to get:

$$s(1-r) = a$$
 (3.13)

Finally, we get the formula for s:

$$s = \frac{a}{1-r}$$
(3.14)

Now, let us plug in values for a and r, then plug s into the infinite sum in Eq.(3.8):

$$s = \frac{1}{1 - \frac{4}{9}} = \frac{1}{\frac{5}{9}} = \frac{9}{5}$$
(3.15)

$$\lim_{k \to \infty} A_k = A_0 [1 + \frac{1}{3}(\frac{9}{5})] = A_0 (1 + \frac{9}{15}) = A_0 (1 + \frac{3}{5})) = A_0 \frac{8}{5}$$
(3.16)

From here, we can see that the limit of the area of the Koch Snowflake as the number of iterations go to infinity, the result will be 8/5 of the original area of the triangle.