Screenshot of Mathdoku				Step by Step Guide
$9+$	3x		2	First fill in all of the 1×1 grids as you know the answers are all in the corner of the squares
	4+	7+		
		6 x		
2 x			${ }^{4} 4$	
${ }^{9+}$	$\mid c c_{3 \mathrm{x}}^{1} \mathrm{l}$	13		Put in all of the possible number combinations for the 2×1 grids
	+ $4+$	${ }_{4}^{7+} 3$	4^{3}	
	1 4	6x		
${ }_{1}^{2 x}$	12		${ }^{4} 4$	

9+	3x		${ }^{2}$	Using this you can figure out some of the places where numbers cannot go, so you can fill in the squares that have to be in those places.
		1	2	
	+ $4+$	$7^{7+} 3$	4^{3}	
	1 4	6x		
${ }^{2 x} \quad 1$	2		${ }^{4} 4$	
				Then you can use these squares to figure out where other numbers must go
$\begin{array}{\|l\|ll} \hline 9+ & 3 x \\ & 3 \end{array}$		1	$\square^{2} 2$	
	${ }^{4+}$	$7^{7+} \times 3$	4^{3}	
	4	6x		
${ }^{2 x} 1$	2		${ }^{4} 4$	
				In all of the places where there are three numbers in a row or column, you can add in the remaining number to each one
4	3	1	${ }^{2} 2$	
	${ }^{4+}$	$7_{4}^{7+} 3$	4^{3}	
	4	6x		
${ }^{2 \times}$	2	3	4	

