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Cambridge Festival 2022
The Trouble with Quizzles

This document complements “The Trouble with Quizzles”, a webinar for 15-17 year olds which was
part of the Cambridge Festival 2022.
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The Trouble with Quizzles

The Quizzle (pictured below) is a guinea-pig sized creature which breeds once a year in the summer.

We are going to model the population of Quizzles with a single equation which shows how the
number of Quizzles in one year depends on the number of Quizzles the year before. We might
decide that the number of Quizzles is proportional to the number of Quizzles the year before,
which kind of makes sense, as we would expect the more Quizzles we have, the more Quizzlets
(Quizzlet = baby Quizzle) we have the following year. This gives a possible equation:

Yn+1 = kyn

where y, stands for the number of quizzles in year n, so y3 = 2450 means that after three years
we have 2450 Quizzles. The initial population of Quizzles is yq, so if yg = 1000 it means that the
number of Quizzles that we are starting with is 1000.

The k in the equation is a parameter that measures how quickly the population of Quizzles grows
(or declines) and could be affected by how many Quizzlets they tend to have, or by how harsh their
environment is. If we were trying to model real data then we would probably look at past data on
the population of Quizzles and choose a k value that fits this. We do run into problems with this
equation though, if we take k = 2 then the number of Quizzles doubles each year and eventually
the surface of the Earth will be covered in a Quizzle carpet!

To make the model more accurate we are going to add in an extra term which will start to restrict
the growth when the number of Quizzles starts to gets large. To do this, it is helpful if we use a new
variable, x,,, which represents the proportion of the maximum possible number of Quizzles that we
have in a given year. We could work out a theoretical maximum number of Quizzles (perhaps based
on their habitats, amount of food etc) and then x3 = 0.5 would mean that in year 3 the number
of Quizzles is half of the maximum possible number. Similarly to before, zq is the starting value,
and represents the proportion of the maximum number of Quizzles that we have at the start.
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Our new equation is:
Tpt1 = kxn (1 —xp)

With this equation, if x,, starts to get close to 1 (so the number of Quizzles is getting close to the
theoretical maximum) then (1 —z,,) becomes close to 0 and this works to restrict the growth of the
Quizzles. This could be because as the number of Quizzles starts to get large the amount of food
starts to run out, or if the number of Quizzles gets large it could lead to an increase in the number
of Quizzle-eaters which then start to eat larger numbers of Quizzles. Like before, k is a parameter
which could depend on reproduction rate, food availability, predators etc.

This equation looks very simple, but was used by ecologists and biologists in the 1950s to model
different populations, for example W E Ricker used the equation to model the population in fisheries
before going onto develop the Ricker model. It can produce some surprising effects as we will see
later!


https://en.wikipedia.org/wiki/Bill_Ricker
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The Logistic Map

The equation
Tpt1 = kxn(1 — xp)

is called the logistic map. Let’s run through an example of how to use it.
We will take £ = 1.5 and zg = 0.8. The first few years are:

zg = 0.8

1 =15x08x (1-0.8)=0.24

x9 =1.5%0.24 x (1 —0.24) = 0.2736

x3 =1.5%0.2736 x (1 — 0.2736) = 0.29811456

If you keep repeating this process, it looks as if the population eventually settles down to % of the
maximum population.

Try yourself: if £ = 2 and g = 0.3, what is the value of x37 What happens as the number of years
increases? What happens if you use a different x(?

Working out values using a calculator gets tedious after a few iterations. You could use a spreadsheet
to help you investigate populations, or you could use the GeoGebra pages we have created.

GeoGebra page with a slider for k. This page shows us graphically what happens to a population
over 30 years. You can input an initial value xy and use a slider to change k.

GeoGebra page with an input box for k. This page is the same as the previous one, but this time
you type in k.

GeoGebra page with sliders for both k& and zg. Another version! This time you can alter both k
and the initial population proportion by using sliders.

For all of the above GeoGebra pages you may need to alter the settings slightly (zoom in/out, or
move bits) so that you can see the entire graph.

Have a play with the above GeoGebra pages. Below are some questions you might like to think

about:

1. Can you find a parameter so that the population always ends up dying out? What can you
say about parameters with this property?

2. Can you find a parameter so that the population settles to a non-zero constant value? What
can you say about parameters with this property?

3. Can you find a parameter so that the population eventually oscillates between two values?
Or eventually cycles between three or four values?

4. Why have we set the slider for parameter k so that it can only go between 0 and 47

Probably my favourite pair of values are k = 3.68 and x¢p = 0.7, which shows some really odd

behaviour!
O
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https://www.geogebra.org/calculator/bcgesk4j
https://www.geogebra.org/calculator/yuymwvxr
https://www.geogebra.org/calculator/fnxfdchs
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Measurement Errors

With the model that we have for the Quizzle population, if we know exactly how many Quizzles
there were at the start then we can accurately tell how many Quizzles there will be at any time in
the future. However we might need to use an estimate for the initial size of the population. When
predicting complicated systems such as weather patterns there may be a lot of initial conditions
(wind speeds, temperature, humidity etc) which will not be measured exactly.

This GeoGebra page allows you to input three initial populations at once, which can be useful if
you want to investigate the effect of errors in the initial values.

Try investigating the effect of errors for the following models:

° k =1.5 with initial populations in the range 0.6 < zp < 0.8 (this means take any values
between 0.6 and 0.8 inclusive).

° k =3.2 with initial populations in the range 0.6 < x¢ < 0.8

° k =3.5 with initial populations in the range 0.6 < x¢ < 0.8

° k =3.7 with initial populations in the range 0.6 < xg < 0.8

You will probably have found that in the first case, no matter what your initial value is (as long as

it is not 0) the population settles down to % of the maximum population.

For the second case, it looks at if the population ends up oscillating between two values, and the

initial condition determines which of the two values you end up on after 30 years.

In the third case, it looks as if the population cycles through four different cycles (this behaviour

has been observed in Lemming populations).

In the fourth case it looks as if you can end up almost anywhere after 30 years. Perhaps a more
accurate measurement of the initial condition might help?

Chaos and the Butterfly Effect

Instead of having initial values in the range 0.6 < zg < 0.8, lets try having a more accurate estimate
of the initial conditions.

Try:

° k =3.7 with initial populations in the range 0.69 < zg < 0.71

° k =3.7 with initial populations in the range 0.699 < zg < 0.701

° k =3.7 with initial populations in the range 0.6999 < zg < 0.7001

You will probably find that as the initial population estimate gets better, the model agrees for the
first few years, but as the number of years increases the populations diverge. Even with an error

of less than 0.1% (as in the last case) the population models only agree for the first few years. The
picture below shows what happens when we take k = 3.7 and initial conditions zo = 0.69999, 0.7

and 0.70001.
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https://www.geogebra.org/calculator/ukhzncyz
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k = 3.7, initial values 0.69999, 0.7 and 0.70001
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Chaos theory is the study of systems where the rules are well defined (as in our population model!),
but very small changes in initial conditions can have very big differences in outcomes. This is
sometimes refereed to as The Butterfly Effect, from the title of Edward Lorenz’s 1972 paper “Pre-
dictability: Does the Flap of a Butterfly’s Wings in Brazil Set Off a Tornado in Texas?” (by which
is meant that tiny differences in initial conditions, such as whether a butterfly flaps its wings or
not, can lead to very large differences in outcomes, such as whether there is a tornado or not).
Lorenz was a meteorologist who worked on simulating weather patterns, and in 1961 discovered
that if he replaced input values with rounded versions (e.g. 0.506 rather than 0.506127) then his
simulation produced very different results.

During the webinar we saw that sometimes a model can exhibit chaotic behaviour. We saw with
the logistic map that for values of k around 3.7, a tiny difference in the input can lead to a huge
difference in the output. This doesn’t have to be a failure of the model: sometimes this is just
how the real world is! We see this happening with the weather. In theory, if we knew the exact
atmospheric conditions right now, we could confidently predict how the weather would evolve. But
it’s impossible to know the atmospheric conditions really precisely. Sometimes that doesn’t matter:
the behaviour is quite stable, and the uncertainty about the starting values doesn’t make too much
difference to whether it’ll rain next Tuesday. But sometimes it’s a real problem. You might have
heard weather forecasters commenting that they’re unsure about the weather over the next couple
of days, and that’s because these uncertainties about the starting values then propagate into major
differences in the weather. Weather forecasters handle this by using ensemble methods ... but
that’s a story for another time!


https://en.wikipedia.org/wiki/Edward_Norton_Lorenz
https://www.metoffice.gov.uk/research/weather/ensemble-forecasting/what-is-an-ensemble-forecast
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Where next?

The logistic map is a ‘discrete-time’ model: we jump from the population in one year to the
population in the next, rather than going smoothly between them. In practice, a lot of real-world
situations need continuous models rather than discrete, and this is where calculus comes in, in the
form of differential equations. You might have already studied differentiation, and as you progress
through your studies you’ll meet differential equations. If you study maths at university (or various
other subjects that use maths), you’ll study differential equations in much more detail, because
they are so crucial for modelling the real world: weather, populations, epidemiology, the motion
of the planets, finance, ... Mathematical biology is a whole branch of maths, which you might be
able to study during a maths degree, and where there’s lots of current exciting research. And using
maths to make predictions is relevant for lots of careers outside of universities too.

Appendix - Cobweb Diagrams

A cobweb diagram is another way that you can explore what is happening with the logistic map.

In the diagram below, the purple line is the graph of y = kx(1 — x) and the blue line is the line
y = x. The initial population proportion is g = 0.2. To find the value of x1 move vertically up to
the line y = z(1 — x) — the coordinates of this point will be (xg,x1). Then move across to y = =z,
the coordinates of this point will be (z1,21). Then keep repeating the process!

y=x

For the situation in the graph above, as the process is repeated the population proportion converges
to a fixed point, which is where the graphs of y = kxz(1 —z) and y = «x intersect. In other situations
the process gets “stuck” in a square about the fixed point (which is when the population proportion
oscillates between two values), or the population proportion behaves chaotically. For other values
of k there will be oscillations about more than 2 points.
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Cobweb diagram showing oscillation Cobweb diagram showing chaos
between two values

You can find two interactive cobweb diagrams here:

° Desmos Cobweb Diagram — this one only shows a few iterations.

. Geogebra Cobweb Diagram — this shows 30 iterations (like the Geogebra graphs). As well
as inputting an initial value you can drag the value on the z-axis along to change it.


https://www.desmos.com/calculator/xn0haimnty
https://www.geogebra.org/calculator/qahzcsk8
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