Cyclic Quadrilaterals Proof that the opposite angles still add upto 180° when the center of the circle is not within the quadrilateral.

A,B,C,D: Triangles
1,2,3,4,5: vertices

1. First I connected each vertice of the quadrilateral to the center point.
2. This made 3 isoceles triangles (A, B, C) +1 another triangle outside the quadrilateral (Triangle D, vertices 154)
3. I calculated the angles at the center point : $60^{\circ}, 60^{\circ}$ and 30°
4. Using these angles I subtracted each of them from 180
a. Triangle A: $180-60=120^{\circ}$
b. Triangle B: $180-60=120^{\circ}$
c. Triangle C: $180-30=150^{\circ}$
5. Then because the 2 base angles are identical as these are isoceles triangles, all I have to do is divide the balance by 2 to get:
a. Triangle A: $120 / 2=60^{\circ}, 60^{\circ}$
b. Triangle B: $120 / 2=60^{\circ}, 60^{\circ}$
c. Triangle C: $150 / 2=75^{\circ}, 75^{\circ}$
6. Triangle D: I used the totals of the angles from the centre $\left(150^{\circ}\right)$ and subtracted them from 180 to get the equal angles of the triangle, which are ${ }^{\circ} 15,15$.
7. Finaly we calculate the angles:
a. Vertice 2: $60^{\circ}+60^{\circ}=120^{\circ}$
b. Vertice 3: $60^{\circ}+75^{\circ}=135^{\circ}$
a. Vertice 1: $60^{\circ}-15^{\circ}=45^{\circ}$
b. Vertice 4: $75^{\circ}-15^{\circ}=60^{\circ}$
8. And now that we have found out all the angles for this quadrilateral, we can prove that opposite angles here also add upto 180, even when the

Vertice 2+ Vertice 4: $120^{\circ}+60^{\circ}=180^{\circ}$
Vertice 3+ Vertice 1: $135^{\circ}+45^{\circ}=180^{\circ}$

