The converse of Pythagoras' theorem states that:
"If a triangle has lengths a, b and c which satisfy $a^{2}+b^{2}=c^{2}$ then it is a right-angled triangle."

Here is a diagram, and a proof that if $a^{2}+b^{2}=c^{2}$ then C cannot be less than 90°, but the proof has been scrambled up.
Can you rearrange it into its original order?

Expanding gives $x^{2}+y^{2}+b^{2}=b^{2}-2 b x+x^{2}+y^{2}$	A
Let $C X=x$ and so we have $A X=b-x$, and also let $B X=y$	B
If $x=0$ then point X is at the same place as point C, which means that $\angle A C B=90^{\circ}$	C
This means that either $b=0$, which is not possible as b is the length of a side of the triangle, or $x=0$	D
$\triangle C X B$ is right-angled, so we have $x^{2}+y^{2}=a^{2}$	E
If $C<90^{\circ}$ then there will be a point X on side $A C$ such that $\angle A X B=90^{\circ}$	F
This contradicts our initial statement that angle C is less than 90°, and so C cannot be less than 90°	G
We start by assuming that there exists a triangle $A B C$ with lengths a, b and c where $a^{2}+b^{2}=c^{2}$, and angle C is less than 90°	H
We have $a^{2}+b^{2}=c^{2}$ and substituting for a^{2} and c^{2} gives $\left(x^{2}+y^{2}\right)+b^{2}=(b-x)^{2}+y^{2}$	I
$\triangle A X B$ is right-angled, so we have $(b-x)^{2}+y^{2}=c^{2}$	J
Simplifying gives $2 b x=0$	

