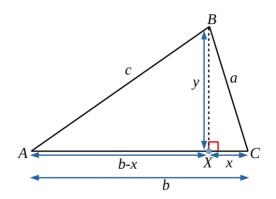


The Converse of Pythagoras

The **converse** of Pythagoras' theorem states that:

"If a triangle has lengths a, b and c which satisfy $a^2 + b^2 = c^2$ **then** it is a right-angled triangle."

Here is a diagram, and a proof that if $a^2 + b^2 = c^2$ then *C* cannot be less than 90°, but the proof has been scrambled up. Can you rearrange it into its original order?



Expanding gives $x^{2} + y^{2} + b^{2} = b^{2} - 2bx + x^{2} + y^{2}$ А В Let CX = x and so we have AX = b - x, and also let BX = yС If x = 0 then point X is at the same place as point C, which means that $\angle ACB = 90^{\circ}$ This means that either b = 0, which is not possible as b is the length of a side of D the triangle, or x = 0Е \triangle *CXB* is right-angled, so we have $x^2 + y^2 = a^2$ F If $C < 90^{\circ}$ then there will be a point X on side AC such that $\angle AXB = 90^{\circ}$ This contradicts our initial statement that angle C is less than 90°, and so C cannot G be less than 90° We start by assuming that there exists a triangle *ABC* with lengths *a*, *b* and *c* where Н $a^2 + b^2 = c^2$, and angle *C* is less than 90° We have $a^2 + b^2 = c^2$ and substituting for a^2 and c^2 gives Ι $(x^{2} + y^{2}) + b^{2} = (b - x)^{2} + y^{2}$ J $\triangle AXB$ is right-angled, so we have $(b - x)^2 + y^2 = c^2$ Κ Simplifying gives 2bx = 0