

Circumference Angles

The angle at the centre of the circle is double the angle at the circumference.

Here is a diagram and a proof that has been scrambled up. Can you rearrange it into its original order?

Using angle sum of a triangle we have $\angle BOC = 180^{\circ} - 2x$	A
$\angle BOA = 2x + 2y = 2(x + y)$	В
Using angle sum on a straight line we have $\angle XOA = 2y$	С
Let $\angle OBC = x$ and let $\angle OCA = y$	D
Using angle sum on a straight line we have $\angle XOB = 2x$	Е
Since $\triangle COA$ is isosceles we have $\angle OCA = \angle OAC = y$	F
Therefore $\angle BOA = 2 \times \angle BCA$	G
Since $\triangle BOC$ is isosceles we have $\angle OBC = \angle OCB = x$	Н
Using angle sum of a triangle we have $\angle COA = 180^{\circ} - 2y$	Ι
$\angle BCA = x + y$	J