Circumference Angles

The angle at the centre of the circle is double the angle at the circumference.

Here is a diagram and a proof that has been scrambled up.
Can you rearrange it into its original order?

Using angle sum of a triangle we have $\angle B O C=180^{\circ}-2 x$	A
$\angle B O A=2 x+2 y=2(x+y)$	B
Using angle sum on a straight line we have $\angle X O A=2 y$	C
Let $\angle O B C=x$ and let $\angle O C A=y$	D
Using angle sum on a straight line we have $\angle X O B=2 x$	F
Since $\triangle C O A$ is isosceles we have $\angle O C A=\angle O A C=y$	F
Therefore $\angle B O A=2 \times \angle B C A$	G
Since $\triangle B O C$ is isosceles we have $\angle O B C=\angle O C B=x$	H
$\angle B C A=x+y$	I
Using angle sum of a triangle we have $\angle C O A=180^{\circ}-2 y$	F

