

A

В

С

D

Ε

F

Can you prove that the sum of the first n odd numbers is n^2 using proof by induction?

Below is a proof that has been scrambled up. Can you cut up the statements and rearrange them into their original order?

Now consider the case n = k + 1, the sum of the first k + 1 odd numbers is $1 + 3 + 5 + \dots + (2k - 1) + (2k + 1)$

... and since the result is true when n = 1, it is true for all integers $n \ge 1$

Assume that the proposition is true when n = k, so we assume that $1 + 3 + 5 + \dots + (2k - 1) = k^2$

Using the result for n=k we have $1+3+5+\dots+(2k-1)+(2k+1) = k^2 + (2k+1) = (k+1)^2$

We are trying to prove that the sum of the first n odd numbers is n^2

Therefore if the result is true when n = k then it is also true when n = k + 1

Base case: When n = 1 we have $1 = 1^2$, and so the proposition is true when n = 1