Can you prove that the sum of the first n odd numbers is n^{2} using proof by induction?

Below is a proof that has been scrambled up. Can you cut up the statements and rearrange them into their original order?

Now consider the case $n=k+1$, the sum of the first $k+1$ odd numbers is $1+3+5+\cdots+(2 k-1)+(2 k+1)$	A
\ldots and since the result is true when $n=1$, it is true for all integers $n \geq 1$	B
Assume that the proposition is true when $n=k$, so we assume that $1+3+5+\cdots+(2 k-1)=k^{2}$	C
Using the result for $\mathrm{n}=\mathrm{k}$ we have $1+3+5+\cdots+(2 k-1)+(2 k+1)=k^{2}+(2 k+1)=(k+1)^{2}$	D
We are trying to prove that the sum of the first n odd numbers is n^{2}	E
Therefore if the result is true when $n=k$ then it is also true when $n=k+1$	F
Base case: When $n=1$ we have $1=1^{2}$, and so the proposition is true when $n=$	G

