

Г

Cut out the statements and put them in order, to prove that the sum of the first n odd numbers is n^2 .

2n - 1, 2n - 3, 2n - 5,, 1	А
As you go along both lists, the corresponding terms in the two lists add up to $2n$	В
Write one list below the other so that the terms are aligned	С
1, 3, 5, 7,, 2 <i>n</i> – 1	D
Now list the first <i>n</i> odd numbers in descending order	E
Therefore the sum of both lists is $2n \times n = 2n^2$	F
Adding together the second numbers from each list also gives $2n$	G
Start by listing the first n odd numbers in ascending order	н
Therefore the sum of the first n odd numbers in each list adds up to n^2	Ι
Adding together the first numbers from each list gives $2n$	J
In total there will be n pairs that add up to $2n$	К