Cut out the statements and put them in order, to prove that the sum of the first n odd numbers is n^{2}.

$2 n-1,2 n-3,2 n-5, \ldots, 1$	A
As you go along both lists, the corresponding terms in the two lists add up to $2 n$	B
Write one list below the other so that the terms are aligned	C
$1,3,5,7, \ldots, 2 n-1$	D
Now list the first n odd numbers in descending order	E
Therefore the sum of both lists is $2 n \times n=2 n^{2}$	G
Adding together the second numbers from each list also gives $2 n$	H
Start by listing the first n odd numbers in ascending order	I
Therefore the sum of the first n odd numbers in each list adds up to n^{2}	K
Adding together the first numbers from each list gives $2 n$	In total there will be n pairs that add up to $2 n$

