A Frosty Puddle

A Frosty Puddle

Frosty the snowman is made from two uniform spherical snowballs, of initial radii $2 R$ and $3 R$. The smaller (which is his head) stands on top of the larger.

As each snowball melts, its volume decreases at a rate which is directly proportional to its surface area, the constant of proportionality being the same for both snowballs. During melting each snowball remains spherical and uniform.

Let V and h denote Frosty's total volume and height at time t.

- Show that, for $2 R<h \leq 10 R, \frac{d V}{d h}=\frac{\pi}{8}\left(h^{2}+4 R^{2}\right)$
- Derive the corresponding expression for $0 \leq h<2 R$
- Sketch $\frac{d V}{d h}$ as a function of h for $4 R \geq h \geq 0$. Hence give a rough sketch of V as a function of h.

Frosty the snowman is made from two uniform spherical snowballs, of initial radii $2 R$ and $3 R$. The smaller (which is his head) stands on top of the larger.

As each snowball melts, its volume decreases at a rate which is directly proportional to its surface area, the constant of proportionality being the same for both snowballs. During melting each snowball remains spherical and uniform.

Let V and h denote Frosty's total volume and height at time t.

- Show that, for $2 R<h \leq 10 R, \frac{d V}{d h}=\frac{\pi}{8}\left(h^{2}+4 R^{2}\right)$
- Derive the corresponding expression for $0 \leq h<2 R$
- Sketch $\frac{d V}{d h}$ as a function of h for $4 R \geq h \geq 0$. Hence give a rough sketch of V as a function of h.

