

Age 11+ Level ★
Worksheet 1 - Solutions

1. Reverse Subtraction

$c = 3$

nrich.maths.org/4951/solution

2. Bus Route

600m

nrich.maths.org/6246/solution

3. Debasing the Coinage

240g lighter

nrich.maths.org/6247/solution

4. Fly Away

$A = 2$

875

$F = 8$

+ 875

$L = 7$

875

$W = 6$

2625

$Y = 5$

nrich.maths.org/5001/solution

5. Hot Dogs

She ate 4 hot dogs on the first day

nrich.maths.org/12868/solution

6. 2014 Even Numbers

The difference between the two sums is 2014

nrich.maths.org/12924/solution

These problems are adapted from UKMT (ukmt.org.uk) and WMC (competition.ac) problems.

Number Operations and Calculation Methods

Age 11+ Level ★ Worksheet 2 - Solutions

1. Down and Along

$$J = 1$$

$$M = 9$$

$$C = 8$$

nrich.maths.org/10198/solution

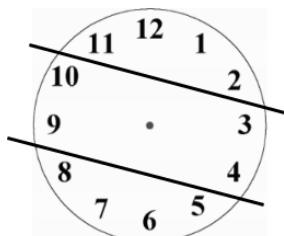
$$\begin{array}{r} 11 \\ + 99 \\ \hline 88 \\ 198 \end{array}$$

2. 354972

The remainder is 2

nrich.maths.org/11668/solution

3. Subtracting to 2008


$$P = 6 \quad Q = 1 \quad R = 9 \quad S = 0$$

$$\text{So } P + Q + R + S = 16$$

nrich.maths.org/10150/solution

$$\begin{array}{r} 8100 \\ - 6092 \\ \hline 2008 \end{array}$$

4. Split Clock face

nrich.maths.org/12831/solution

5. 50, 50, 50 and 50

He will be 56 on his next birthday

nrich.maths.org/11687/solution

6. Missing Digits

$$\begin{array}{r} K = 1 \\ N = 5 \end{array} \quad \begin{array}{r} L = 0 \\ P = 6 \end{array} \quad \begin{array}{r} M = 2 \\ \end{array}$$

nrich.maths.org/12864/solution

$$\begin{array}{r} 102564 \\ \times 4 \\ \hline 410256 \end{array}$$

These problems are adapted from UKMT (ukmt.org.uk) and WMC (competition.ac) problems.

Age 11+ Level ★
Worksheet 3 - Solutions

1. Identical Digit Multiplication

$$77 \times 55 = 4235$$

so the product is 4235

nrich.maths.org/12877/solution

2. In Sum-mary

The product of all three numbers is 0

nrich.maths.org/7162/solution

3. Carry Over

M = 0, so M has the lowest value

nrich.maths.org/6253/solution

$$\begin{array}{r} 98 \\ + 4 \\ \hline 102 \end{array}$$

4. Magic Error

13 and 15 need to be swapped to create a Magic Square

Their sum is 28

nrich.maths.org/10108/solution

5. Walk or Run?

Walking both ways would take him 56 minutes

nrich.maths.org/12567/solution

These problems are adapted from UKMT (ukmt.org.uk) and WMC (competition.ac) problems.

Age 11+ Level ★★
Worksheet 1 - Solutions

1. Jam and Egg Sandwich

$$\begin{array}{lll} E = 2 & G = 8 & J = 5 \\ A = 7 & M = 6 & \end{array}$$

nrich.maths.org/7186/solution

$$\begin{array}{r} 288 \\ \times \quad 2 \\ \hline 576 \end{array}$$

2. So Many Sums

$$\begin{array}{r} 36 \\ + 2987 \\ \hline 3023 \end{array} \quad \text{or} \quad \begin{array}{r} 37 \\ + 2986 \\ \hline 3023 \end{array}$$

Therefore $Y \times O = 6 \times 7$ (or 7×6) = 42

nrich.maths.org/5031/solution

3. Rolling Along the Trail

The scores were 10, 15, 9, 20, 12

nrich.maths.org/7183/solution

4. Kangaroo Subtraction

The largest possible value of 'KAN' is 864

$$\begin{array}{r} 864 \\ - 765 \\ \hline 99 \end{array}$$

nrich.maths.org/6756/solution

5. Operational Decision

$$1 \times 2 \times (3 \times 4 + 5) \times (6 \times 7 + 8 + 9) = 2006$$

so \times should replace \oplus

nrich.maths.org/10140/solution

These problems are adapted from UKMT (ukmt.org.uk) and WMC (competition.ac) problems.

Age 11+ Level ★★
Worksheet 2 - Solutions

1. Multiple Choice

She answered 62 questions correctly

nrich.maths.org/12882/solution

2. Adding Tricky Fractions

They add to 1

nrich.maths.org/12913/solution

3. See Axes

$X = 7$

nrich.maths.org/13138/solution

$$\begin{array}{r} 899 \\ + 899 \\ \hline 1798 \end{array}$$

4. ABC Addition

$abc = 367$

nrich.maths.org/13140/solution

$$\begin{array}{r} 367 \\ + 376 \\ \hline 743 \end{array}$$

5. Palindromic Milometer

His greatest possible average speed was $\frac{211}{3} = 70\frac{1}{3}$ miles per hour

nrich.maths.org/12865/solution

These problems are adapted from UKMT (ukmt.org.uk) and WMC (competition.ac) problems.

Age 11+ Level ★★
Worksheet 3 - Solutions

1. Quiz Question

40 matches

nrich.maths.org/12575/solution

2. Sum of Ten

The largest possible integer is 55

nrich.maths.org/12568/solution

3. Filling Morecambe Bay

$6 \times 60 \times 24 \times 365 \times (2 \times 10^7)$ is approximately

$400 \times 20 \times 400 \times 2 \times 10^7 =$

$4 \times 2 \times 4 \times 2 \times 10^{12} = 6 \times 10^{13}$ litres (to 1 sig fig)

nrich.maths.org/11629/solution

4. Roses and Carnations

They can choose from 10 different possible bunches

nrich.maths.org/13237/solution

5. Bookshop

She bought 3 books and 8 magazines

nrich.maths.org/11698/solution

6. Product of Fractions

$$1\frac{2}{3} \times 1.8 \times 1\frac{1}{7} \times 1.75 \times 1\frac{5}{6} = 1\frac{2}{3} \times 1\frac{4}{5} \times 1\frac{1}{7} \times 1\frac{3}{4} \times 1\frac{5}{6} =$$

$$\frac{5}{3} \times \frac{9}{5} \times \frac{8}{7} \times \frac{7}{4} \times \frac{11}{6} = \frac{5 \times 9 \times 8 \times 7 \times 11}{3 \times 5 \times 7 \times 4 \times 6} =$$

$$\frac{5 \times (3 \times 3) \times (2 \times 4) \times 7 \times 11}{3 \times 5 \times 7 \times 4 \times (2 \times 3)} = \frac{5 \times 3 \times 3 \times 2 \times 4 \times 7 \times 11}{5 \times 3 \times 3 \times 2 \times 4 \times 7} = 11$$

nrich.maths.org/13227/solution

These problems are adapted from UKMT (ukmt.org.uk) and WMC (competition.ac) problems.

Age 11+ Level ★★★
Worksheet 1 - Solutions

1. Last Digit

The last digit is $1 + 6 = 7$

nrich.maths.org/12785/solution

2. Sum of 1s

The last 5 digits of the sum will be 56566

nrich.maths.org/12468/solution

3. Squares and Cubes

36 numbers

(the two digit numbers whose units digits are 1, 5, 6 or 0)

nrich.maths.org/12591/solution

4. Comparing Totals

$n = 14 \quad (1 + 2 + \dots + 13 + 14 = 15 + 16 + \dots + 19 + 20)$

nrich.maths.org/12538/solution

5. Digit Deletion

She could have erased 746 numbers

nrich.maths.org/6771/solution

6. Sum One Special

6, -3 and -2

nrich.maths.org/5008/solution

7. Divisible by 55

22765910 is a multiple of 55, with $ab = 10$

22765965 is a multiple of 55, with $ab = 65$

nrich.maths.org/13222/solution

These problems are adapted from UKMT (ukmt.org.uk) and WMC (competition.ac) problems.