This pack contains 22 of our favourite NRICH activities aimed at children aged about 11-14 to enable you to run a Maths Fair. This pack contains:

- An activity list with information about required resources
- 40 printable activities (their instruction sheets and game boards)
- Printable resources (to be printed and cut out)

Many of the activities require physical resources which are not included. These are standard maths classroom equipment such as multi-link, counters and dice.

Please carefully check the equipment needed for each activity you decide to use. Many require printable cut outs which can be found at the back of this pack. Not all of the printable resources included at the back of the pack are essential.

<table>
<thead>
<tr>
<th>No.</th>
<th>Activity Name</th>
<th>Age Suitability</th>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 DOM</td>
<td>✓</td>
<td>4 specific dominoes (or the printed cutouts).</td>
</tr>
<tr>
<td>4</td>
<td>Can You Traverse it?</td>
<td>✓</td>
<td>Paper and pencils.</td>
</tr>
<tr>
<td>5</td>
<td>Creating Cubes</td>
<td>✓</td>
<td>27 multi-link cubes (3 colours, 9 of each).</td>
</tr>
<tr>
<td>7</td>
<td>Dicey Operations</td>
<td>✓</td>
<td>Printed grids and pencils.</td>
</tr>
<tr>
<td>8</td>
<td>Domino Square</td>
<td>✓</td>
<td>10 specific dominoes (or the printed cutouts).</td>
</tr>
<tr>
<td>9</td>
<td>Domino Tetrads</td>
<td>✓</td>
<td>A full set of 28 dominoes (or the printed cutouts).</td>
</tr>
<tr>
<td>12</td>
<td>Factors & Multiples Game</td>
<td>✓</td>
<td>At least 40 small counters (or lots of copies of the printed grids and pencils).</td>
</tr>
<tr>
<td>14</td>
<td>First Connect Three</td>
<td>✓</td>
<td>2 dice and 18 counters (2 colours, 9 of each).</td>
</tr>
<tr>
<td>16</td>
<td>Frogs</td>
<td>✓</td>
<td>10 counters (2 colours, 5 of each).</td>
</tr>
<tr>
<td>No.</td>
<td>Activity Name</td>
<td>Age Suitability</td>
<td>Resources</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Gabriel's Problem</td>
<td>✓</td>
<td>Numbered counters (or the printed cutouts).</td>
</tr>
<tr>
<td>18</td>
<td>Largest Product</td>
<td>✓</td>
<td>Paper and pencils.</td>
</tr>
<tr>
<td>19</td>
<td>Last Biscuit</td>
<td>✓</td>
<td>12 counters (2 colours, 8 of one and 4 of the other).</td>
</tr>
<tr>
<td>20</td>
<td>Make 37</td>
<td>✓</td>
<td>Paper and pencils.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cut out 1s, 3s, 5s and 7s.</td>
</tr>
<tr>
<td>27</td>
<td>Pentanim</td>
<td>✓</td>
<td>10 counters.</td>
</tr>
<tr>
<td>28</td>
<td>Sandwiches</td>
<td>✓</td>
<td>14 printed number cutouts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14 fridge magnet numbers.</td>
</tr>
<tr>
<td>29</td>
<td>Square Tangram</td>
<td>✓</td>
<td>10 printed tangram cutouts in colour.</td>
</tr>
<tr>
<td>30</td>
<td>Sticky Numbers</td>
<td>✓</td>
<td>17 printed number cutouts</td>
</tr>
<tr>
<td>32</td>
<td>Teacups</td>
<td>✓</td>
<td>16 printed teacup and saucer cutouts</td>
</tr>
<tr>
<td>35</td>
<td>The Tower of Hanoi</td>
<td>✓</td>
<td>7 printed cutouts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wooden Tower of Hanoi puzzle</td>
</tr>
<tr>
<td>36</td>
<td>Two and Two</td>
<td>✓</td>
<td>Paper and pencils.</td>
</tr>
<tr>
<td>40</td>
<td>Who's Who?</td>
<td>✓</td>
<td>13 printed name cutouts</td>
</tr>
</tbody>
</table>
Use the four dominoes on the right to make a square ‘window’ like the one on the left.

The dominoes do not need to match where they touch but there must be the same number of dots on all four sides.
A traversable graph is one you can draw without taking your pen off the paper, and without going over any edge twice.

For each graph, decide whether or not it is traversable.

It might be helpful to keep a track of where you started, the route you took, and where you finished.
Can You Traverse It?

nrich.maths.org/mathsfair

Copyright © University of Cambridge
Creating Cubes

You have 27 cubes. There are 3 different colours and there are 9 cubes of each colour.

Arrange them into a large 3 by 3 by 3 cube in this special way:

On each face of the new large cube, no row or column of cubes can contain two cubes of the same colour.
This is a game for two players.

To Start: You need a die and two empty grids.

How to play: Takes turns to roll a die and write the number you rolled into a square on your grid.

To Win: When your grid is complete add together the three 3-digit numbers. The closest to 1000 wins.
Dicey Operations

Player 1

Player 2

nrich.maths.org/mathsfair
Domino Square

You need these 10 dominoes.

The highest is ‘double three’.

Use these dominoes to make a square so that each side has 8 dots.

The dominoes do not have to match.
Domino Tetrads

You can make a small square like the example on the right by using four dominoes.

Make sure that where the dominoes touch, the numbers of spots on each side is the same.

Your Task

Using a full set of 28 dominoes can you make 7 small squares (each with 4 dominoes)?
This is a game for two players. You can either play with counters on a board or by crossing numbers out on a printed sheet.

To Start
Decide who will go first, that person chooses an even number from the grid that is less than 50, and crosses it out (or puts a counter on it).

To Play
On your turn you choose a number and cross it out. The number you choose must be a factor or multiple of the number crossed out last turn.

To Win
If there are no valid numbers remaining for you to cross out then you lose the game.

An example game
The first five turns in the game on the right were:

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Player A: 12
Player B: 4
Player A: 88
Player B: 11
Player A: 77

It is now player B’s turn and there is only one number which they can cross out.
Factors & Multiples Game 2

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

[Image: nrich.maths.org/mathsfair](nrich.maths.org/mathsfair)
First Connect Three

This is a game for two players.

To play the game:

On you turn do the following:

- Roll both dice
- Choose whether to add them together other or subtract one from the other.
- Place a counter on top of your answer on the board.

For example, if you roll a 1 and a 4, your options are:

- \(1 + 4 = 5 \)
- \(4 - 1 = 3 \)
- \(1 - 4 = -3 \)

You cannot cover a number which has already been covered. If all the numbers you can make are covered, then you must pass.

To win the game:

The winner is the first to complete three in a row. The row can be horizontal, vertical or diagonal.

In the game on the right the red player has won.
First Connect Three

<table>
<thead>
<tr>
<th></th>
<th>-5</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

nrich.maths.org
nrich.maths.org/mathsfair

Copyright © University of Cambridge
There are five brown frogs and five green frogs sitting on their lily pads like this:

The **aim**: Swap the positions of the green frogs and the brown frogs.

The Rules

- Only **one frog can move** at a time.
- Frogs can jump over another frog, but not two or more frogs.
- Frogs can only move **one square at a time**.
- The **brown** frogs can only move (or jump) **right**.
- The **green** frogs can only move (or jump) **left**.
If you can’t find real frogs, use counters. Choose one of the grids to start with and set up your counters (the smaller grids are the easiest).

Move and jump the frogs until they have completely swapped positions.

What is the smallest number of moves it takes to swap all the frogs over?

Try putting more frogs at one end than the other.
<table>
<thead>
<tr>
<th>Frogs 3</th>
</tr>
</thead>
</table>

| nrich.maths.org/mathsfair |
| Copyright © University of Cambridge |

Activity 16
Gabriel wrote the numbers 1-9 in a 3x3 grid.

He then multiplied together all the numbers in each row and wrote the resulting product next to that row. He also multiplied the numbers in each column together, and wrote the product under that column.

He then rubbed out the numbers 1-9.

Can you work out where Gabriel placed the numbers 1-9 in the grid?

Did you have enough information, not enough, or exactly the right amount?
Gabriel’s Problem 2

Can you place the numbers 1-9 in the grid to give the marked products in each row and column?

One of these two grids has more than one solution.
To make this grid, Gabriel used the numbers 1, 2, 3, 4, 5, 6, 9, 10 and 12.

Can you place these numbers in the grid to give the marked products in each row and column?
What is the greatest product that can be made from numbers that add up to 10?

1 + 9 = 10
1 x 9 = 9

3 + 3 + 4 = 10
3 x 3 x 4 = 36

3.3 + 6.7 = 10
3.3 x 6.7 = 22.11

1 + 2 + 3 + 4 = 10
1 x 2 x 3 x 4 = 24

5 + 5 = 10
5 x 5 = 25

18
Last Biscuit 1

This is a game for two players.

To Start
Put 4 biscuits in one jar and 8 in the other jar.

To Play
Take turns to remove biscuits from the board following the rules below:

When it’s your turn you can either:

1) take any number of biscuits from just one jar, or
2) take the same number of biscuits from both jars.

To Win
The winner is the person who takes the last biscuit (or biscuits).

Think carefully and see if you can discover a winning strategy.

Do you think it matters who goes first?
Last Biscuit 2

Start with 8 biscuits in this jar.

Start with 4 biscuits in this jar.
Four bags contain a large amount of 1s, 3s, 5s and 7s.

Pick any ten numbers from the bags so that their total is 37.
This is a game for two players.

To Start
Put 10 counters onto the ‘Pentanim’ game board, one in each space.

To Play
Take turns to remove either one counter or two counters from the board. You can only remove two counters if they are connected by a straight line (there can be empty spaces between the two counters).

To Win
The winner is the player who picks up the last counter (or the last two counters).
1) Start with two 1’s, two 2’s and two 3’s (as below).

```
1 1 2 2 3 3
```

Arrange these six digits in a line so that:

- between the two 1’s there is one digit,
- between the two 2’s there are two digits, and
- between the two 3’s there are three digits

2) Now, try to do it if you only have two 1’s and two 2’s (one digit between the 1’s and two digits between the 2’s). Can it be done?

```
1 1 2 2
```

3) It is possible to add two 4’s and then arrange all the numbers as in part (1) but now with four digits between the two 4’s.

```
1 1 2 2 3 3 4 4
```
4) If you try to add two 5’s (as below) it is **impossible** to arrange them in a ‘sandwich’!

```
1 1 2 2 3 3 4 4 5 5
```

It’s also **impossible** to do if you also add two 6’s.

```
1 1 2 2 3 3 4 4 5 5 6 6
```

However, it can be done when you add two 7’s! Can you manage it?

```
1 1 2 2 3 3 4 4 5 5 6 6 7 7
```

5) There is more than one way of doing this – try to find at least two arrangements that work with all seven digits.
Square Tangram

The first task is to make a square using four pieces of the same colour.

It will fit in the smallest square outline in the middle of the sheet.

Now try making a square using five pieces of the same colour.

It will fit in the middle square outline (only slightly larger than the smallest square outline).

The final challenge is to make a square using all 10 pieces.

It will fill the largest square outline on the sheet.
Look at the following line of numbers:

\[
\begin{array}{|c|c|c|c|c|}
\hline
10 & 15 & 21 & 4 & 5 \\
\hline
\end{array}
\]

They are arranged so that each pair of adjacent numbers adds up to a square number:

\[
\begin{align*}
10 + 15 &= 25 \\
15 + 21 &= 36 \\
21 + 4 &= 25 \\
4 + 5 &= 9
\end{align*}
\]

Your Task

Try to arrange the numbers 1 to 17 in a line so that every adjacent pair adds up to a square number.

Can you arrange them in more than one way? If not, can you explain why your solution is the only one?
Teacups

Arrange the cups and saucers into the four by four grid so that:

• Every **row** has only one cup of each colour and one saucer of each colour.
• Every **column** has only one cup of each colour and one saucer of each colour.

AND

Put each cup on top of a saucer so that there are no repeated combinations.

For example, you could have a blue cup on a blue saucer, a red cup on a blue saucer, a blue cup on a red saucer, etc…
The Tower of Hanoi

This is a very old puzzle from Asia which is sometimes called “The Tower of Brahma”.

To Start

Put the three smallest pieces in the left square with the largest on the bottom and the smallest on the top.

The Aim

Move all three pieces to the right area.

The Rules

• You can only move one piece at a time.
• You may not place a larger piece on top of a smaller piece.

What is the smallest number of moves with which you can move all the pieces?

Now try starting with 4 pieces on the left, then with 5 and so on…
The Tower of Hanoi

Start with all the pieces in this space.

Finish with all the pieces in this space.
How many solutions can you find to the two sums below?

Each of the different letters stands for a different number.
What’s it Worth?

Each symbol has a numerical value.

The total for the symbols is written at the end of each row and column.

Can you find the missing total that should go where the question mark has been put?
We can represent a group of friends by drawing a graph.

Each node (circle) represents a person.

An edge (line) joins two nodes if and only if those two people are friends.

Below is a graph showing a group of friends.

Can you work out who's who using the clues?

1. Alan has 3 friends, Barney, Charlie, and Daniel.
2. Barney and Ed are both friends with Charlie.
3. Ed is Frank's only friend.
Here is a second network of friends. Again, use the clues below to figure out who's who.

1. Bella and Ciara are friends
2. Emily and Ciara are not friends
3. Bella is Fiona's only friend
4. Anna has more friends than anyone else
5. Daphne has three friends
6. Gill and Daphne are not friends
7. Emily has two friends
Print and cut out the 4 dominoes below:
Version 2
Print and cut out the 4 dominoes below:
Activity 7

Dicey Operations

Player 1

Player 2

Player 1

Player 2

Player 1

Player 2

Player 1

Player 2

Copyright © University of Cambridge
Version 1

Print and cut out the 10 dominoes below:
Print and cut out the 10 dominoes below:
Version 1: Print and cut out the 28 dominoes below
Activity

Domino Tetrads

Version 2: Print and cut out the 28 dominoes below

[Diagram of 28 dominoes]
Factors and Multiples Game

Use one grid for each game you play.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
<td>68</td>
<td>69</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
<td>98</td>
<td>99</td>
<td>100</td>
</tr>
</tbody>
</table>

Copyright © University of Cambridge

nrich.maths.org/mathsfair
Print and cut out the 36 numbers below.

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
9 10 12

1 2 3
4 5 6
7 8 9

1 2 3
4 5 6
7 8 9
Print and cut out the 40 numbers below

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>
Print and cut out the 14 numbers below:
Square Tangram

Print and cut out the 5 red tangram pieces on this page and the 5 blue tangram pieces on the next page.
Activity 29

Square Tangram

Print and cut out the 5 blue tangram pieces on this page and the 5 red tangram pieces on the previous page.
Print and cut out the 17 numbers below

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
Teacups

Version 1: For those with less time for cutting out.
Version 2: For those with a little more time for cutting out.
Print and cut out all the 7 pieces below.
Two and Two

How many solutions can you find to the two sums below?

Each of the different letters stands for a different number.
Print and cut out the 13 names below:

<table>
<thead>
<tr>
<th>Alan</th>
<th>Anna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barney</td>
<td>Bella</td>
</tr>
<tr>
<td>Charlie</td>
<td>Ciara</td>
</tr>
<tr>
<td>Daniel</td>
<td>Daphne</td>
</tr>
<tr>
<td>Ed</td>
<td>Emily</td>
</tr>
<tr>
<td>Frank</td>
<td>Fiona</td>
</tr>
<tr>
<td></td>
<td>Gill</td>
</tr>
</tbody>
</table>