Throughout these challenges the touching faces of any adjacent dice must have the same number.

In the picture above, three dice are joined with $4 s$ between the blue and green, and therefore 3 s between the green and red.
The total of the numbers on the top is 9 in each case.
The two arrangements will be thought of as the same even though they are in a different order and this is true for all the challenges.

For each of the four challenges, you will be using four dice.

Challenge 1

Find a way of making the total on the top come to each number from 11 to 18 inclusive, keeping to the same joining numbers throughout.

Here is an example:

Remember, any touching faces must be a pair of the same numbers.

Challenge 2

Using any joining numbers, find as many different ways as possible to make the tops add up to 12 .
How can you be sure you've found all the possible ways?

Challenge 3

Arrange the dice in as many ways as possible, so the total of the tops of the left-hand pair is twice the total of the tops of the right-hand pair.

In the picture below, the top total of the left-hand pair is three times the right-hand pair, not two times so you cannot use this arrangement.

$8888 \cdot 0$

Challenge 4

Arrange the dice in as many ways as possible, so the pair on the left-hand side has a top product* which is double or treble the right-hand pair product.

In the picture above, the left-hand pair product is twelve times bigger than the right.
*The product of two numbers is one multiplied by the other. For example, the product of 3 and 5 is 15 because $3 \times 5=15$.

