# Leadership for Learning Project 2017-18 

Alison Borthwick alb207@cam.ac.uk
Fran Watson fw279@cam.ac.uk
NRICH Primary Team

## Leadership for Learning Project 2017-18

Wednesday $4^{\text {th }}$ October 2017 29th November<br>Tuesday<br>$9^{\text {th }}$ January<br>2018 $6{ }^{\text {th }}$ March<br>Wednesday $18^{\text {th }}$ April<br>$20^{\text {th }}$ June

## 2016-7 Project Overview

Autumn term: Problem solving (2 days) Spring term: Reasoning (2 days) Summer term: Fluency (2 days)

## nrich.maths.org/towerhamlets

## Project Overview 2017-18

Having developing an understanding of the three aims, the focus this year will be on assessment of these.

Autumn term: Problem solving (2 days) Spring term: Reasoning (2 days)
Summer term: Fluency (2 days)

## Introductions

- Name
- Role
- Setting
- Why you're here?


## Myths about problem solving?

nrich.maths.org
© University of Cambridge

## Different Types of Problems

- Word problems
- Pictorial problems
- Abstract problems
- Fictitious problems
- Real life problems
- Problems involving measurement, time, geometry, money, manipulatives ...


## A Few Strategies

- Pattern spotting
- Working systematically
- Finding all the possibilities
- Using diagrams and pictorial information
- Working backwards
- Trail and improvement
- Visualising
- Conjecturing
- Using manipulatives


## Problem-solving Process

1. Getting started
try a simpler case draw a diagram
represent with model act it out
2. Working on the problem
visualise
reason logically
work systematically
work backwards
conjecture
look for a pattern trial and improvement
3. Digging deeper
generalise verify prove
4. Concluding
communicate findings
evaluate
nrich.maths.org

## A First Product Sudoku (5919)


nrich.maths.org

## Self assess

- How would you evaluate your work?
- How successful were you?
- Did anything surprise you?
- What would you do differently next time?


## Purpose of assessment?

- What is assessment?
- Why do we assess?
- How do we assess?
- What else should be assessed?


## Four Triangles Puzzle (141)

If you cut a square diagonally from corner to corner in both directions, you get four right-angled isosceles triangles.


How many different shapes can you make using all 4 shapes each time?

## Frameworks to facilitate

- Take 15 minutes on your table to familiarise yourselves with it and then with a partner use it as a rubric to evaluate the problem solving aspect of your work on the task.


## Frameworks on tables:

- ACME (Red)
- Bloom's Taxonomy (Orange)
- Cuoco, Goldberg and Mark (Green)
- Kilpatrick et al's Rope model (Blue)


## Rainbow cascade

Now re-group so that each table has a Red, Orange, Green and Blue contributor.

Discuss your findings.
Note down a strength and limitation of each framework on post-its.

## Customised

- Opportunity for a bespoke template
- Framework/template/rubric
© University of Cambridge


## Magic Vs (6274)

1. Place each of the numbers $1-5$ in the V shape so that the arms of the V have the same total.

2. How many different possibilities are there?
3. How could you convince someone that you have found them all?

## Magic Vs

- What did you notice?
- Did anything surprise you?
- What would you do/ask next?
© University of Cambridge


## Finding all solutions



## Share revisions

- How robust was your rubric? (problem solving not solely content)
- What changes did you make and why?


## Teacher takeaway

1. Try the Four Triangles Puzzle (141)
2. Try either Magic Vs (6274) or Money Bags (1116)
3. Use your rubric to assess the two tasks
4. Reflect on your assessment
5. Bring some children's work, and your completed rubrics to Day 2 (29 ${ }^{\text {th }}$ November)
