

If $z_1 = a+bi$, $z_2 = c+di$ and $z_3 = z_1 z_2$, then

$$z_3 = (a+bi)(c+di) = ac - bd + (ad + bc)i$$

z_3 is real if and only if $ad + bc = 0$.

So if, given $z_1 = a+bi$, one wants to choose z_2 such that the product of z_1 and z_2 is a real number, choose $z_2 = c+di$ such that $ad + bc = 0$.

If, given a $z_1 = a+bi$, one wants to choose z_2 such that the product of z_1 and z_2 is purely imaginary, choose $z_2 = c+di$ such that $ac - bd = 0$.

The following is a method for finding the complex number $c+di$, such that $(a+bi)(c+di) = x+yi$.

Expanding the LHS,

$$(a+bi)(c+di) = ac + adi + bci - bd$$

Gathering like terms, this is equal to

$$ac - bd + (ad + bc)i$$

Now since $\alpha_1 + \beta_1 i = \alpha_2 + \beta_2 i$ if and only if $\alpha_1 = \alpha_2$ and $\beta_1 = \beta_2$,

$$ac - bd + (ad + bc)i = x + yi \text{ if and only if}$$

$$ac - bd = x$$

and

$$ad + bc = y$$

These equations can be solved simultaneously for c and d , revealing that

$$c = \frac{ax + by}{a^2 + b^2} \text{ and } d = \frac{ay - bx}{a^2 + b^2}.$$

So one must multiply $a+bi$ by $\frac{ax + by}{a^2 + b^2} + \frac{ay - bx}{a^2 + b^2}i$ to obtain $x+yi$.