


STEP Support Programme

Mechanics Questions

2012 S1 Q11

- 1 The diagram shows two particles, A of mass $5m$ and B of mass $3m$, connected by a light inextensible string which passes over two smooth, light, fixed pulleys, Q and R , and under a smooth pulley P which has mass M and is free to move vertically.

Particles A and B lie on fixed rough planes inclined to the horizontal at angles of $\arctan \frac{7}{24}$ and $\arctan \frac{4}{3}$ respectively. The segments AQ and RB of the string are parallel to their respective planes, and segments QP and PR are vertical. The coefficient of friction between each particle and its plane is μ .

- (i) Given that the system is in equilibrium, with both A and B on the point of moving up their planes, determine the value of μ and show that $M = 6m$.
- (ii) In the case when $M = 9m$, determine the initial accelerations of A , B and P in terms of g .

2013 S2 Q11

- 2 Three identical particles lie, not touching one another, in a straight line on a smooth horizontal surface. One particle is projected with speed u directly towards the other two which are at rest. The coefficient of restitution in all collisions is e , where $0 < e < 1$.

- (i) Show that, after the second collision, the speeds of the particles are $\frac{1}{2}u(1-e)$, $\frac{1}{4}u(1-e^2)$ and $\frac{1}{4}u(1+e)^2$. Deduce that there will be a third collision whatever the value of e .
- (ii) Show that there will be a fourth collision if and only if e is less than a particular value which you should determine.

