NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
Number Sense				
Represent, Compare and Order Numbers 0 to 10000 4 m 12 Represent, compare, and order whole numbers to 10000 , using a variety of tools Number Lines in Disguise Representing Numbers That Number Square! Number Match 4m13 Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.1 to 10000 , using a variety of tools and strategies Nice or Nasty Roman Numerals Coded Hundred Square The Deca Tree Which Scripts? 4 m 14 Read and print in words whole numbers to one thousand, using meaningful contexts	Represent, Compare and Order Numbers 0.01 to 10000 5 m 12 Represent, compare, and order whole numbers and decimal numbers from 0.01 to 100 000, using a variety of tools and strategies Number Lines in Disguise Representing Numbers Greater Than or Less Than? Nice or Nasty 5m13 Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.01 to 100000 , using a variety of tools and strategies Roman Numerals Coded Hundred Square The Deca Tree Spiralling Decimals Which Scripts? 5 m 14 Read and print in words whole numbers to ten thousand, using meaningful contexts	Represent, Compare and Order Numbers 0.01 to 1 000000 6 m11 Represent, compare, and order whole numbers and decimal numbers from 0.001 to 1000000 , using a variety of tools and strategies Represent, compare, and order whole numbers to 10 000, using a variety of tools Number Lines in Disguise Greater Than or Less Than? Nice or Nasty Spiralling Decimals 6m12 Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.001 to 1000000 , using a variety of tools and strategies Coded Hundred Square The Deca Tree Spiralling Decimals	Represent, Compare and Order Integers 7m13 Identify and compare integers found in real-life contexts 7m14 Represent and order integers, using a variety of tools Number Lines in Disguise Greater Than or Less Than? Number Sense and Numeration Overall: 7m8	Represent, Compare and Order Rational Numbers 8 m 13 Represent, compare, and order rational numbers (i.e., positive and negative fractions and decimals to thousandths) Number Lines in Disguise Greater Than or Less Than? 8 m 14 Translate between equivalent forms of a number (i.e., decimals, fractions, percents) Number Sense and Numeration Overall: 8m8

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
4m15 Round four-digit whole numbers to the nearest ten, hundred, and thousand, in problems arising from real-life situations 4m16 Represent, compare, and order decimal numbers to tenths, using a variety of tools, and using standard decimal notation 4 m 22 Solve problems that arise from real-life situations and that relate to the magnitude of whole numbers up to 10000 4m24 Count forward by tenths from any decimal number expressed to one decimal place, using concrete materials and number lines Number Sense and Numeration Overall: 4m8	5m18 Demonstrate and explain equivalent representations of a decimal number, using concrete materials and drawings 5 m 19 Read and write money amounts to $\$ 1000$ 5 m 21 Count forward by hundredths from any decimal number expressed to two decimal places, using concrete materials and number lines Number Sense and Numeration Overalls: 5m8, 5m9	Which Scripts? 6 m 13 Read and print in words whole numbers to one hundred thousand, using meaningful contexts 6 m 16 Solve problems that arise from real-life situations and that relate to the magnitude of whole numbers up to 1000000 Number Sense and Numeration Overall: 6m8		

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4

Operations Involving Numbers 0 to 10000

 4 m 13 Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.1 to 10000 , using a variety of tools and strategies
Nice or Nasty

Roman Numerals
Coded Hundred Square
The Deca Tree
Spiralling Decimals 4m26 Solve problems involving the addition and subtraction of four-digit numbers, using studentgenerated algorithms and standard algorithms 4 m32 Multiply two-digit whole numbers by one-digit whole numbers, using a variety of tools, studentgenerated algorithms, and standard algorithms 4 m33 Divide two-digit whole numbers by one-digit whole

Grade 5
Operations Involving Numbers 0.01 to 10000
5 m 13 Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.01 to 100000 , using a variety of tools and strategies
Roman Numerals
Coded Hundred Square
The Deca Tree
Spiralling Decimals
5m15 Round decimal numbers to the nearest tenth, in problems arising from reallife situations Round the Dice Decimals 2
5 m 20 Solve problems that arise from real-life situations and that relate to the magnitude of whole numbers up to 100000
5 m 23 Add and subtract decimal numbers to hundredths, including money amounts, using concrete

Grade 6
Operations Involving Numbers 0.001 to 1000000 6 m 12 Demonstrate an understanding of place value in whole numbers and decimal numbers from 0.001 to 1000000 , using a variety of tools and strategies Coded Hundred Square The Deca Tree Spiralling Decimals 6 m 19 Solve problems involving the multiplication and division of whole numbers (four-digit by twodigit), using a variety of tools and strategies
Long Multiplication Method in Multiplying

Madness?

6 m20 Add and subtract decimal numbers to thousandths, using concrete materials, estimation, algorithms, and calculators 6 m 21 Multiply and divide decimal numbers to tenths

Grade 7
Represent, Compare, Order and Operate Using Decimal Numbers
7m11 Represent, compare, and order decimals to hundredths and fractions using a variety of tools Spiralling Decimals
7m14 Represent and order integers, using a variety of tools
7m18 Divide whole numbers by simple fractions and by decimal numbers to hundredths, using concrete materials
7 m 19 Use a variety of mental strategies to solve problems involving the addition and subtraction of fractions and decimals 7 m 20 Solve problems involving the multiplication and division of decimal numbers to thousandths by one-digit whole numbers,

Grade 8

Multi-Step Problems Involving Whole and Decimal Numbers

 8m13 Represent, compare, and order rational numbers (i.e., positive and negative fractions and decimals to thousandths)Up, Down, Flying Around 8 m 16 Solve multi-step problems arising from reallife contexts and involving whole numbers and decimals, using a variety of tools and strategies 8 m 18 Use estimation when solving problems involving operations with whole numbers, decimals, percents, integers, and fractions, to help judge the reasonableness of a solution 8 m 21 Represent the multiplication and division of integers, using a variety of tools
Galley Division

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
numbers, using a variety of tools and student-generated algorithms 4m34 Use estimation when solving problems involving the addition, subtraction, and multiplication of whole numbers, to help judge the reasonableness of a solution 4m83 Identify, through investigation, and use the commutative property of multiplication to facilitate computation with whole numbers 4m84 Identify, through investigation, and use the distributive property of multiplication over addition to facilitate computation with whole numbers Number Sense and Numeration Overalls: 4m8, 4m10 Patterning and Algebra Overall: 4m75	materials, estimation, and algorithms 5m24 Multiply two-digit whole numbers by two-digit whole numbers, using estimation, studentgenerated algorithms, and standard algorithms Method in Multiplying Madness? 5m25 Divide three-digit whole numbers by one-digit whole numbers, using concrete materials, estimation, studentgenerated algorithms, and standard algorithms The Remainders Game Number Sense and Numeration Overalls: 5m8, 5m10	by whole numbers, using concrete materials, estimation, algorithms, and calculators Route Product 6 m 22 Multiply whole numbers by $0.1,0.01$, and 0.001 using mental strategies 6 m 23 Multiply and divide decimal numbers by 10, 100, 1000 , and 10000 using mental strategies Repetitiously 6 m 24 Use estimation when solving problems involving the addition and subtraction of whole numbers and decimals, to help judge the reasonableness of a solution 6m66 Determine the solution to a simple equation with one variable, through investigation using a variety of tools and strategies	using a variety of tools and strategies 7m21 Solve multi-step problems arising from reallife contexts and involving whole numbers and decimals, using a variety of tools and strategies Forgot the Numbers 7 m 22 Use estimation when solving problems involving operations with whole numbers, decimals, and percents, to help judge the reasonableness of a solution 7m23 Evaluate expressions that involve whole numbers and decimals, including expressions that contain brackets, using order of operations 7 m 26 Add and subtract integers, using a variety of tools Forwards Add Backwards Cryptarithms	8m22 Solve problems involving operations with integers, using a variety of tools Napier's Location Arithmetic 8m23 Evaluate expressions that involve integers, including expressions that contain brackets and exponents, using order of operations 8 m 62 Evaluate algebraic expressions with up to three terms, by substituting fractions, decimals, and integers for the variables 8 m 64 Solve and verify linear equations involving a onevariable term and having solutions that are integers, by using inspection guess and check and a "balance" model Number Sense and Numeration Overall: 8m9

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
		Number Sense and Numeration Overalls: 6m8, 6m9 Patterning and Algebra Overall: 6m56	7 m 35 Solve problems that require conversion between metric units of measure Number Sense and Numeration Overalls: 7m8, 7m9 Measurement Overall: 7m32	
Mental Math, Multiplicative Relationships and Equality 4 m 25 Add and subtract twodigit numbers, using a variety of mental strategies Diagonal Sums 4 m 29 Multiply to 9×9 and divide to $81 \div 9$, using a variety of mental strategies Multiplication Square Jigsaw Shape Times Shape Times Tables Shifts 4 m 30 Solve problems involving the multiplication of one-digit whole numbers, using a variety of mental strategies	Mental Math, Multiplicative Relationships and Equality 5 m 22 Solve problems involving the addition, subtraction, and multiplication of whole numbers, using a variety of mental strategies 5m30 Demonstrate an understanding of simple multiplicative relationships involving whole-number rates, through investigation using concrete materials and drawings 5m69 Demonstrate, through investigation, an understanding of variables as	Mental Math, Whole Number Relationships and Order of Operations 6 m 17 Identify composite numbers and prime numbers, and explain the relationship between them (i.e., any composite number can be factored into prime factors) Various Venns 6 m 18 Use a variety of mental strategies to solve addition, subtraction, multiplication, and division problems involving whole numbers	Whole Number Relationships and Operations 7m12 Generate multiples and factors, using a variety of tools and strategies Factor-multiple Chains Factors and Multiples Gabriel's Problem Dozens Missing Multipliers Factors and Multiples Puzzle 7 m 16 Represent perfect squares and square roots, using a variety of tools Sticky Numbers 7m21 Solve multi-step problems arising from real-	Whole Number Relationships and Powers of Ten 8m11 Express repeated multiplication using exponential notation Power Mad! 8m12 Represent whole numbers in expanded form using powers of ten 8m15 Determine common factors and common multiples using the prime factorization of numbers Counting Cogs Stars 14 Divisors

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4

4m31 Multiply whole

 numbers by 10, 100, and 1000, and divide whole numbers by 10 and 100, using mental strategies 4m35 Describe relationships that involve simple wholenumber multiplication 4m37 Demonstrate an understanding of simple multiplicative relationships involving unit rates, through investigation using concrete materials and drawings 4m81 Determine, through investigation, the inverse relationship between multiplication and division Multiplication Squares 4 m 82 Determine the missing number in equations involving multiplication of one- and two-digit numbers, using a variety of tools and strategiesGrade 6
6 m 25 Explain the need for a standard order for performing operations, by investigating the impact that changing the order has when performing a series of operations Four Goodness Sake Make 100

Number Sense and Numeration Overalls: 6m8, 6m9

Number Sense and Numeration Overalls: 5m10, 5m11
Patterning and Algebra Overall: 5m62

Grade 7
life contexts and involving whole numbers and
decimals, using a variety of tools and strategies
7m22 Use estimation when solving problems involving operations with whole numbers, decimals, and percents, to help judge the reasonableness of a solution 7m23 Evaluate expressions that involve whole numbers and decimals, including expressions that contain brackets, using order of operations
The 24 Game

Number Sense and Numeration Overalls: 7m8, 7m9

Grade 8
8 m 24 Multiply and divide decimal numbers by various powers of ten 8m25 Estimate, and verify using a calculator, the positive square roots of whole numbers, and distinguish between whole numbers that have wholenumber square roots (i.e., perfect square numbers) and those that do not
Powers and Roots - Short Problems

Number Sense and Numeration Overalls: 8m8, 8m9

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
Number Sense and Numeration Overalls: 4m10, 4m11 Patterning and Algebra Overall: 4m75				
Numeration: Fractions, Decimals and Percentages				
Represent, Compare, and Order Fractions 4m17 Represent fractions using concrete materials, words, and standard fractional notation, and explain the meaning of the denominator as the number of fractional parts of a whole or a set, and the numerator as the number of fractional parts being considered [partwhole relationships] Fraction Match Fractional Triangles Bryony's Triangle 4m18 Compare and order fractions (i.e., halves, thirds, fourths, fifths, tenths) by considering the size and the number of fractional parts	Represent, Compare, and Order Fractions 5m16 Represent, compare, and order fractional amounts with like denominators, including proper and improper fractions and mixed numbers, using a variety of tools and using standard fractional notation Fractional Triangles Bryony's Triangle 5 m 17 Demonstrate and explain the concept of equivalent fractions, using concrete materials Fraction Match Fair Feast Matching Fractions	Fractions, Ratios and Rates 6m14 Represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers, using a variety of tools and using standard fractional notation Fractional Triangles Bryony's Triangle Ordering Fractions 6 m 26 Represent ratios found in real-life contexts, using concrete materials, drawings, and standard fractional notation Pumpkin Pie Problem Orange Drink Jumping	Represent, Compare, Order and Operate Using Fractions 7 m 11 Represent, compare, and order decimals to hundredths and fractions, using a variety of tools 7m18 Divide whole numbers by simple fractions and by decimal numbers to hundredths, using concrete materials 7 m 19 Use a variety of mental strategies to solve problems involving the addition and subtraction of fractions and decimals 7 m 24 Add and subtract fractions with simple like and unlike denominators, using a variety of tools and algorithms	Operations Involving Fractions 8m18 Use estimation when solving problems involving operations with whole numbers, decimals, percents, integers, and fractions, to help judge the reasonableness of a solution 8 m 19 Represent the multiplication and division of fractions, using a variety of tools and strategies 8m20 Solve problems involving addition, subtraction, multiplication, and division with simple fractions 8 m 62 Evaluate algebraic expressions with up to three terms, by substituting

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
4m19 Compare fractions to the benchmarks of $0,1 / 2$, and 1 4 m 23 Count forward by halves, thirds, fourths, and tenths to beyond one whole, using concrete materials and number lines Number Sense and Numeration Overalls: 4m8, 4m9	Number Sense and Numeration Overall: 5m8	Mixing Lemonade 6 m 28 Represent relationships using unit rates Number Sense and Numeration Overalls: 6m8, 6m10	Linked Chains 7 m 25 Demonstrate, using concrete materials, the relationship between the repeated addition of fractions and the multiplication of that fraction by a whole number Number Sense and Numeration Overalls: 7m8, 7m9	fractions, decimals, and integers for the variables Number Sense and Numeration Overall: 8m9 Patterning and Algebra Overall: 8m55
Fractions and Decimal Tenths Relationships 4m17 Represent fractions using concrete materials, words, and standard fractional notation, and explain the meaning of the denominator as the number of fractional parts of a whole or a set, and the numerator as the number of fractional parts being considered [partwhole relationships] 4m20 Demonstrate and explain the relationship	Fractions and Decimal Hundredths Relationships 5 m 16 Represent, compare, and order fractional amounts with like denominators, including proper and improper fractions and mixed numbers using a variety of tools and using standard fractional notation 5m17 Demonstrate and explain the concept of equivalent fractions, using concrete materials Fraction Match	Fractions, Decimals, Ratios and Rates 6 m14 Represent, compare, and order fractional amounts with unlike denominators, including proper and improper fractions and mixed numbers, using a variety of tools and using standard fractional notation A4 Fraction Subtraction 6 m 15 Estimate quantities using benchmarks of 10%, $25 \%, 50 \%, 75 \%$, and 100%	Fractions, Decimals, Percents, Ratios 7 m 15 Select and justify the most appropriate representation of a quantity (i.e., fraction, decimal, percent) for a given context Retiring to Paradise 7 m 22 Use estimation when solving problems involving operations with whole numbers, decimals, and percents, to help judge the reasonableness of a solution	Solve Problems involving Proportions 8m14 Translate between equivalent forms of a number (i.e., decimals, fractions, percents) 8m17 Solve problems involving percents expressed to one decimal place and whole-number percents greater than 100 8m18 Use estimation when solving problems involving operations with whole numbers, decimals,

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
between equivalent fractions, using concrete materials and drawings Fraction Match Fair Feast A4 Fraction Subtraction Matching Fractions 4m36 Determine and explain, through investigation, the relationship between fractions (i.e., halves, fifths, tenths) and decimals to tenths, using a variety of tools and strategies Number Sense and Numeration Overalls: 4m8, 4m11	Linked Chains 5m18 Demonstrate and explain equivalent representations of a decimal number, using concrete materials and drawings 5 m 28 Describe multiplicative relationships between quantities by using simple fractions and decimals 5 m 29 Determine and explain, through investigation using concrete materials, drawings, and calculators, the relationship between fractions (i.e., with denominators of $2,4,5,10$, $20,25,50$, and 100) and their equivalent decimal forms Number Sense and Numeration Overalls: 5m8, 5m11	6m26 Represent ratios found in real-life contexts, using concrete materials, drawings, and standard fractional notation Pumpkin Pie Problem Orange Drink Jumping Mixing Lemonade 6m27 Determine and explain, through investigation using concrete materials, drawings, and calculators, the relationships among fractions (i.e., with denominators of $2,4,5,10$, 25,50 , and 100), decimal numbers, and percents Fraction Match Doughnut Percents Number Sense and Numeration Overalls: 6m8, 6m10	7 m 27 Determine, through investigation, the relationships among fractions, decimals, percents, and ratios Matching Fractions, Decimals and Percentages 7 m 28 Solve problems that involve determining whole number percents, using a variety of tools 7m29 Demonstrate an understanding of rate as a comparison, or ratio, of two measurements with different units 7 m 30 Solve problems involving the calculation of unit rates 7 m 74 Collect and organize categorical, discrete, or continuous primary data and secondary data and display the data in charts, tables, and graphs (including relative frequency tables and circle graphs) that have	percents, integers, and fractions, to help judge the reasonableness of a solution 8m26 Identify and describe real-life situations involving two quantities that are directly proportional Fruit Basket Ratio 8 m 27 Solve problems involving proportions, using concrete materials, drawings, and variables Tray Bake 8 m 28 Solve problems involving percent that arise from real-life contexts 8 m 29 Solve problems involving rates 8m46 Determine, through investigation using a variety of tools, relationships among area, perimeter, corresponding side lengths, and corresponding angles of similar shapes 8m76 Compare two attributes or characteristics,

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
			appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools Number Sense and Numeration Overalls: 7m8, 7m9, 7m10 Data Management and Probability Overall: 7m70	using a scatter plot, and determine whether or not the scatter plot suggests a relationship 8m79 Compare two attributes or characteristics, using a variety of data management tools and strategies (i.e., pose a relevant question, then design an experiment or survey, collect and analyse the data, and draw conclusions) Number Sense and Numeration Overalls: 8m9, 8m10 Geometry and Spatial Sense Overall: 8m41 Data Management and Probability Overall: 8m66
Measurement				
Time 4 m 42 Estimate, measure (i.e., using an analogue clock) and	Time 5m33 Estimate, measure (i.e., using an analogue clock), and			

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
represent time intervals to the nearest minute Clocks	represent time intervals to the nearest second Clocks			
4 m 43 Estimate and determine elapsed time, with and without using a time line, given the durations of events expressed in five-minute intervals, hours, days, weeks, months, or years Two Clocks	5 m 34 Estimate and determine elapsed time, with and without using a time line, given the durations of events expressed in minutes, hours, days, weeks, months, or years Two Clocks 5m39 Solve problems			
4m56 Solve problems involving the relationship between years and decades, and between decades and centuries	involving the relationship between a 12-hour clock and a 24-hour clock Measurement Overalls: 5m31, 5m32			
Measurement Overalls: 4m38, 4m39	Decimal Time			
Money 4m21 Read and represent money amounts to $\$ 100$ 4 m 28 Add and subtract money amounts by making simulated purchases and providing change for	Temperature 5m35 Measure and record temperatures to determine and represent temperature changes over time 5m74 Distinguish between discrete data (i.e., data organized using a variety of			

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
amounts up to $\$ 100$, using a variety of tools Number Sense and Numeration Overalls: 4m8, 4m10	tools numbers that have gaps between them, such as whole numbers, and often used to represent a count, such as the number of times a word is used) and continuous data (i.e., data organized using all numbers on a number line that fall within the range of the data, and used to represent measurements such as heights or ages of trees) 5m75 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject, and record observations or measurements 5 m 76 Collect and organize discrete or continuous primary data and secondary data and display the data in charts, tables, and graphs			

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
	(including broken-line graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools 5 m 79 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs (including broken-line graphs) 5 m 80 Calculate the mean for a small set of data and use it to describe the shape of the data set across its range of values, using charts, tables, and graphs 5m81 Compare similarities and differences between two related sets of data, using a variety of strategies Measurement Overall: 5m31 Data Management Overalls: 5m71, 5m72			

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
Linear Measurement 4m40 Estimate, measure, and record length, height, and distance, using standard units (i.e., millimetre, centimetre, metre, kilometre) Olympic Starters 4m41 Draw items using a ruler, given specific lengths in millimetres or centimetres 4m48 Describe, through investigation, the relationship between various units of length (i.e., millimetre, centimetre, decimetre, metre, kilometre) $4 m 49$ Select and justify the most appropriate standard unit (i.e., millimetre, centimetre, metre, kilometre) to measure the side lengths and perimeters of various polygons Measurement Overalls: 4m38, 4m39	Linear Measurement 5 m 37 Select and justify the most appropriate standard unit (i.e., millimetre, centimetre, decimetre, metre, kilometre) to measure length, height, width, and distance, and to measure the perimeter of various polygons Measurement Overall: 5m32	Linear, Perimeter, and Area - Measurements and Constructions 6m31 Demonstrate an understanding of the relationship between length, height, width, and distance, and to measure the perimeter of various polygons estimated and precise measurements, and determine and justify when each kind is appropriate Perimeter Expressions 6m32 Estimate, measure, and record length, area, mass, capacity, and volume, using the metric measurement system 6 m 33 Select and justify the appropriate metric unit (i.e., millimetre, centimetre, decimetre, metre, decametre, kilometre) to measure length or distance in a given real-life situation		

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
		6 m 35 Construct a rectangle, a square, a triangle, and a parallelogram, using a variety of tools, given the area and/or perimeter Area and Perimeter Fence It Constructing Triangles Perimeter Possibilities Measurement Overalls: 6m29, 6m30		
Perimeter and Area 4m26 Solve problems involving the addition and subtraction of four-digit numbers, using studentgenerated algorithms and standard algorithms 4m27 Add and subtract decimal numbers to tenths, using concrete materials and student-generated algorithms 4m31 Multiply whole numbers by 10,100 , and 1000, and divide whole	Perimeter and Area 5m36 Estimate and measure the perimeter and area of regular and irregular polygons, using a variety of tools and strategies Torn Shapes Smaller and Smaller Perimeter Challenge 5 m 37 Select and justify the most appropriate standard unit (i.e., millimetre, centimetre, decimetre, metre, kilometre) to measure	Area of Parallelograms and Triangles 6m32 Estimate, measure, and record length, area, mass, capacity, and volume, using the metric measurement system 6 m 35 Construct a rectangle, a square, a triangle, and a parallelogram, using a variety of tools, given the area and/or perimeter Area and Perimeter Fence It Constructing Triangles	Area 7m17 Explain the relationship between exponential notation and the measurement of area and volume 7 m 33 Research and report on real-life applications of area measurements Warmsnug Double Glazing 7 m 36 Solve problems that require conversion between metric units of area (i.e., square centimetres, square metres)	Circles 8m33 Solve problems that require conversions involving metric units of area, volume, and capacity (i.e., square centimetres and square metres; cubic centimetres and cubic metres; millilitres and cubic centimetres) 8 m 34 Measure the circumference, radius, and diameter of circular objects, using concrete materials 8m35 Determine, through investigation using a variety

With thanks to Debbie Lajoie
Please email any comments to primary.nrich@maths.org

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Gra	Gra	Grade 6	Grade 7	Grade 8
numbers by 10 and 100, using mental strategies 4m32 Multiply two-digit whole numbers by one-digit whole numbers, using a variety of tools, studentgenerated algorithms, and standard algorithms 4m33 Divide two-digit whole numbers by one-digit whole numbers, using a variety of tools and student-generated algorithms 4m44 Estimate, measure using a variety of tools and strategies, and record the perimeter and area of polygons 4 m 49 Select and justify the most appropriate standard unit (i.e., millimetre, centimetre, metre, kilometre) to measure the side lengths and perimeters of various polygons 4m50 Determine, through investigation, the relationship	the perimeter of various polygons 5 m 38 Solve problems requiring conversion from metres to centimetres and from kilometres to metres 5m40 Create, through investigation using a variety of tools and strategies, twodimensional shapes with the same perimeter or the same area Dicey Perimeter, Dicey Area 5m41 Determine, through investigation using a variety of tools and strategies, the relationships between the length and width of a rectangle and its area and perimeter, and generalize to develop the formulas [i.e., Area= length x width; Perimeter $=(2 x$ length $)+(2 x$ width)] 5 m 42 Solve problems requiring the estimation and	Perimeter Possibilities 6m36 Determine, through investigation using a variety of tools and strategies, the relationship between the area of a rectangle and the areas of parallelograms and triangles, by decomposing and composing Triangles in a Square Tilted Squares 6 m 37 Develop the formulas for the area of a parallelogram (i.e., Area of parallelogram = base x height) and the area of a triangle [i.e., Area of triangle $=$ (base x height) $\div 2$], using the area relationships among rectangles, parallelograms, and triangles 6 m 38 Solve problems involving the estimation and calculation of the areas of triangles and the areas of parallelograms Tangram Area	7 m 37 Determine, through investigation using a variety of tools and strategies, the relationship for calculating the area of a trapezoid, and generalize to develop the formula [i.e., Area = (sum of lengths of parallel sides x height) $\div 2$] 7 m 38 Solve problems involving the estimation and calculation of the area of a trapezoid Trapezium Four 7m39 Estimate and calculate the area of composite twodimensional shapes by decomposing into shapes with known area relationships Tangram Area 7m66 Translate phrases describing simple mathematical relationships into algebraic expressions, using concrete materials Quadratic Patterns	of tools and strategies, the relationships for calculating the circumference and the area of a circle, and generalize to develop the formulas [i.e., Circumference of a circle $=\pi x$ diameter; Area of a circle $=\pi x$ (radius)2] 8m36 Solve problems involving the estimation and calculation of the circumference and the area of a circle Circular Area Centre Square Rolling Around 8 m 44 Construct a circle, given its centre and radius, or its centre and a point on the circle, or three points on the circle Measurement Overall: 8m31 Geometry and Spatial Sense Overall: 8m40

With thanks to Debbie Lajoie

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
between the side lengths of a rectangle and its perimeter and area Fitted Numerically Equal 4 m 51 Pose and solve meaningful problems that require the ability to distinguish perimeter and area 4m57 Compare, using a variety of tools, twodimensional shapes that have the same perimeter or the same area 4m89 Collect and organize discrete primary data and display the data in charts, tables, and graphs (including stem-and-leaf plots and double bar graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools	calculation of perimeters and areas of rectangles 5m68 Demonstrate, through investigation, an understanding of variables as changing quantities, given equations with letters or other symbols that describe relationships involving simple rates 5m69 Demonstrate, through investigation, an understanding of variables as unknown quantities represented by a letter or other symbol 5m70 Determine the missing number in equations involving addition, subtraction, multiplication, or division and one- or two-digit numbers, using a variety of tools and strategies Measurement Overalls: 5m31, 5m32	Isometric Areas Isosceles Triangles 6 m 39 Determine, using concrete materials, the relationship between units used to measure area (i.e., square centimetre, square metre), and apply the relationship to solve problems that involve conversions from square metres to square centimetres 6m63 Demonstrate an understanding of different ways in which variables are used 6 m 64 Identify, through investigation, the quantities in an equation that vary and those that remain constant 6 m 65 Solve problems that use two or three symbols or letters as variables to represent different unknown quantities	Number Pyramids Your Number Is Summing Consecutive Numbers Shifting Times Tables Seven Squares Odds, Evens and More Evens 7m67 Evaluate algebraic expressions by substituting natural numbers for the variables The Simple Life Fruity Totals Shape Products Number Sense and Numeration Overall: 7m8 Measurement Overalls: 7m31, 7m32 Patterning and Algebra Overall: 7m59	

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada
 http://nrich.maths.org

Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
4m90 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs (including stem-and-leaf plots and double bar graphs) 4m93 Compare similarities and differences between two related sets of data, using a variety of strategies Number Sense and Numeration Overall: 4m10 Measurement Overalls: 4m38, 4m39 Data Management Overalls: 4m85, 4m86	Patterning and Algebra Overall: 5m62	$6 m 66$ Determine the solution to a simple equation with one variable, through investigation using a variety of tools and strategies Measurement Overall: 6m29, 6m30 Patterning and Algebra Overall: 6m56		

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada
 http://nrich.maths.org

Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
Mass 4m55 Estimate, measure, and record the mass of objects, using the standard units of the kilogram and the gram What's My Weight 4 m 52 Compare and order a collection of objects, using standard units of mass (i.e., gram, kilogram) and/or capacity (i.e., millilitre, litre) 4m53 Determine, through investigation, the relationship between grams and kilograms 4 m 55 Select and justify the most appropriate standard unit to measure mass (i.e., milligram, gram, kilogram) and the most appropriate standard unit to measure the capacity of a container (i.e., millilitre, litre) Measurement Overalls: 4m38, 4m39	Mass 5 m 45 Select and justify the most appropriate standard unit to measure mass (i.e., milligram, gram, kilogram, tonne) Measurement Overall: 5m32	Mass 6m32 Estimate, measure, and record length, area, mass, capacity, and volume, using the metric measurement system 6 m 34 Solve problems requiring conversion from larger to smaller metric units Watermelons Measurement Overalls: 6m29, 6m30		

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
Volume and Capacity 4 m 46 Estimate, measure, and record the capacity of containers, using the standard units of the litre and the millilitre 4 m 47 Estimate, measure using concrete materials, and record volume, and relate volume to the space taken up by an object Pouring Problem 4 m 52 Compare and order a collection of objects, using standard units of mass (i.e., gram, kilogram) and/or capacity (i.e., millilitre, litre) Next Size Up 4m54 Determine, through investigation, the relationship between millilitres and litres 4 m 55 Select and justify the most appropriate standard unit to measure mass (i.e., milligram, gram, kilogram) and the most appropriate	Volume and Capacity 5m43 Determine, through investigation, the relationship between capacity (i.e., the amount a container can hold) and volume (i.e., the amount of space taken up by an object), by comparing the volume of an object with the amount of liquid it can contain or displace 5m44 Determine, through investigation using stacked congruent rectangular layers of concrete materials, the relationship between the height, the area of the base, and the volume of a rectangular prism, and generalize to develop the formula (i.e., Volume = area of the base x height) 5m69 Demonstrate, through investigation, an understanding of variables as unknown quantities	Volume, Surface Area and Capacity 6m32 Estimate, measure, and record length, area, mass, capacity, and volume, using the metric measurement system 6 m 34 Solve problems requiring conversion from larger to smaller metric units 6 m 40 Determine, through investigation using a variety of tools and strategies, the relationship between the height, the area of the base, and the volume of a triangular prism, and generalize to develop the formula (i.e., Volume = area of base x height) 6 m 41 Determine, through investigation using a variety of tools and strategies, the surface area of rectangular and triangular prisms Brush Loads Cubes		

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
standard unit to measure the capacity of a container (i.e., millilitre, litre) Measurement Overalls: 4m38, 4m39	represented by a letter or other symbol 5m70 Determine the missing number in equations involving addition, subtraction, multiplication, or division and one- or two-digit numbers, using a variety of tools and strategies Measurement Overall: 5m32 Patterning and Algebra Overall: 5m62	6 m 42 Solve problems involving the estimation and calculation of the surface area and volume of triangular and rectangular prisms Painted Cube 6m63 Demonstrate an understanding of different ways in which variables are used 6 m 64 Identify, through investigation, the quantities in an equation that vary and those that remain constant 6 m 65 Solve problems that use two or three symbols or letters as variables to represent different unknown quantities 6m66 Determine the solution to a simple equation with one variable, through investigation using a variety of tools and strategies Measurement Overalls: 6m29, 6m30		

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
		Patterning and Algebra Overall: 6m56		
Geometry and Spatial; Sense				
Angles and Geometric Properties of 2D Shapes 4m61 Draw the lines of symmetry of twodimensional shapes, through investigation using a variety of tools and strategies Symmetry Challenge 4m62 Identify and compare different types of quadrilaterals (i.e., rectangle, square, trapezoid, parallelogram, rhombus) and sort and classify them by their geometric properties Always, Sometimes, or Never? Shape Stringy Quads 4m63 Identify benchmark angles (i.e., straight angle, right angle, half a right angle), using a reference tool, and compare other angles to these benchmarks	Angles and Geometric Properties of 2D Shapes 5m49 Distinguish among polygons, regular polygons, and other two-dimensional shapes Always, Sometimes, or Never? Shape 5m51 Identify and classify acute, right, obtuse, and straight angles 5m52 Measure and construct angles up to 90 , using a protractor 5 m 53 Identify triangles (i.e., acute, right, obtuse, scalene, isosceles, equilateral), and classify them according to angle and side properties Triangles All Around 5m54 Construct triangles, using a variety of tools, given acute or right angles and side measurements	Angles and Geometric Properties of 2D Shapes 6m46 Sort and classify quadrilaterals by geometric properties related to symmetry, angles, and sides, through investigation using a variety of tools and strategies National Flags Stringy Quads Completing Quadrilaterals 6 m 47 Sort polygons according to the number of lines of symmetry and the order of rotational symmetry, through investigation using a variety of tools Shady Symmetry 6 m 48 Measure and construct angles up to 180° using a protractor, and	Angles and Geometric Properties of 2D Shapes 7m46 Construct related lines (i.e., parallel; perpendicular; intersecting at 30 , 450 , and 60) , using angle properties and a variety of tools and strategies 7 m 47 Sort and classify triangles and quadrilaterals by geometric properties related to symmetry, angles, and sides, through investigation using a variety of tools and strategies Triangles in Circles Where are They? 7 m 48 Construct angle bisectors and perpendicular bisectors, using a variety of tools and strategies, and represent equal angles and equal lengths using mathematical notation	Angles and Geometric Properties of 2D Shapes 8m43 Sort and classify quadrilaterals by geometric properties, including those based on diagonals, through investigation using a variety of tools Diagonals 8m45 Determine, through investigation using a variety of tools, relationships among area, perimeter, corresponding side lengths, and corresponding angles of similar shapes 8m47 Determine, through investigation using a variety of tools and strategies, the angle relationships for intersecting lines and for parallel lines and transversals, and the sum of the angles of a triangle

With thanks to Debbie Lajoie

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
4 m 64 Relate the names of the benchmark angles to their measures in degrees Geometry and Spatial Sense Overall: 4m58 Shapes on the Playground Polydron	Geometry and Spatial Sense Overall: 5m46 Shapes on the Playground Polydron	classify them as acute, right, obtuse, or straight angles Estimating Angles 6 m 49 Construct polygons using a variety of tools, given angle and side measurements Geometry and Spatial Sense Overall: 6m43 Shapes on the Playground; Polydron	Bisector Intersection 7m50 Identify, through investigation, the minimum side and angle information (i.e., side-side-side; side-angle-side; angle-side-angle) needed to describe a unique triangle Geometry and Spatial Sense Overalls: 7m43, 7m44	8m48 Solve anglerelationship problems involving triangles, intersecting lines, and parallel lines and transversals Angles in Three Squares 8m49 Determine the Pythagorean relationship, through investigation using a variety of tools and strategies Pythagoras' Theorem \& Trigonometry 8 m 50 Solve problems involving right triangles geometrically, using the Pythagorean relationship Pythagorean Triples Pythagoras' Dream Geometry and Spatial Sense Overalls: 8m40, 8m41
3D Figures 4m65 Identify and describe prisms and pyramids, and classify them by their	3D Figures 5m50 Distinguish among prisms, right prisms,	3D Figures 6 m 50 Build threedimensional models using connecting cubes, given	Measurement, Surface Area, Volume 7m17 Explain the relationship between	Cylinders 8m32 Research, describe, and report on applications of

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4
geometric properties (i.e., shape of faces, number of edges, number of vertices), using concrete materials 4m66 Construct a threedimensional figure from a picture or model of the figure, using connecting cubes
4 m 67 Construct skeletons of three-dimensional figures, using a variety of tools, and sketch the skeletons 4 m68 Draw and describe nets of rectangular and triangular prisms
4m69 Construct prisms and pyramids from given nets 4m70 Construct threedimensional figures, using only congruent
Shapes

Geometry and Spatial Sense Overalls: 4m58, 4m59
A Chain of Eight Polyhedra

Grade 5
pyramids, and other threedimensional figures 5m55 Identify prisms and pyramids from their nets

Cut Nets

5 m 56 Construct nets of prisms and pyramids, using a variety of tools

Geometry and Spatial Sense Overalls: 5m46, 5m47

Grade $6 \quad$ Grade 7
isometric sketches or different views (i.e., top, side, front) of the structure
6 m 51 Sketch, using a variety of tools, isometric perspectives and different views (i.e., top, side, front) of three-dimensional figures built with interlocking cubes

Geometry and Spatial Sense Overall: 6m44 volume
7 m 21 Solve multi-step whole numbers and tools and strategies

Tilted Tank

7 m 34 Sketch different the same volume
exponential notation and the measurement of area and problems arising from reallife contexts and involving decimals, using a variety of polygonal prisms that share

7 m 35 Solve problems that require conversion between metric units of measure 7 m 40 Determine, through investigation using a variety of tools and strategies, the relationship between the height, the area of the base, and the volume of right prisms with simple polygonal bases, and generalize to develop the formula (i.e., Volume $=$ area of base x height)

Grade 8
volume and capacity measurement 8m33 Solve problems that require conversions involving metric units of area, volume, and capacity (i.e., square centimetres and square metres; cubic centimetres and cubic metres; millilitres and cubic centimetres) 8m37 Determine, through investigation using a variety of tools and strategies, the relationship between the area of the base and height and the volume of a cylinder, and generalize to develop the formula (i.e., Volume = area of base x height) 8m38 Determine, through investigation using concrete materials, the surface area of a cylinder 8 m 39 Solve problems involving the surface area and the volume of cylinders, using a variety of strategies

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada
 http://nrich.maths.org

Problems have detailed teachers' resources suggesting how they can be integrated into lessons

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada
 http://nrich.maths.org

Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
			Number Pyramids Your Number Is Summing Consecutive Numbers Shifting Times Tables Seven Squares Odds, Evens and More Evens 7 m 67 Evaluate algebraic expressions by substituting natural numbers for the variables The Simple Life Fruity Totals Shape Products 7 m 69 Solve linear equations of the form $\mathrm{ax}=\mathrm{c}$ or $\mathrm{c}=\mathrm{ax}$ and $a x+b=c$ or variations such as $b+a x=c$ and $c=b x$ $+a$ (where a, b, and c are natural numbers) by modelling with concrete materials, by inspection, or by guess and check, with and without the aid of a calculator	

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
			Number Sense and Numeration Overalls: 7m8, 7m9 Measurement Overall: 7m32 Geometry and Spatial Sense Overall: 7m43 Patterning and Algebra Overall: 7m59 3D Shapes	
Location, Movement and Geometric Patterns 4 m71 Identify and describe the general location of an object using a grid system 4 m 72 Identify, perform, and describe reflections using a variety of tools 4 m73 Create and analyse symmetrical designs by reflecting a shape, or shapes, using a variety of tools, and identify the congruent shapes in the designs National Flags 4m79 Make predictions related to repeating	Location, Movement and Geometric Patterns 5m57 Locate an object using the cardinal directions (i.e., north, south, east, west) and a coordinate system Chippy's Journeys 5m58 Compare grid systems commonly used on maps (i.e., the use of numbers and letters to identify an area; the use of a coordinate system based on the cardinal directions to describe a specific location)	Location, Movement and Geometric Patterns 6m52 Explain how a coordinate system represents location, and plot points in the first quadrant of a Cartesian coordinate plane A Cartesian Puzzle Treasure Island Coordinate Challenge Eight Hidden Squares 6 m 53 Identify, perform, and describe, through investigation using a variety of tools, rotations of 180 ㅇ and clockwise and counter	Location and Transformations 7m51 Determine, through investigation using a variety of tools, relationships among area, perimeter, corresponding side lengths, and corresponding angles of congruent shapes Shape Draw 7m52 Demonstrate an understanding that enlarging or reducing two-dimensional shapes creates similar shapes Twice as Big?	Location and Movement 8 m 52 Graph the image of a point, or set of points, on the Cartesian coordinate plane after applying a transformation to the original point(s) (i.e., translation; reflection in the x-axis, the y-axis, or the angle bisector of the axes that passes through the first and third quadrants; rotation of $90^{\circ}, 180^{\circ}$, or 270° about the origin) Transformation Game 8m53 Identify, through investigation, real-world

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
geometric and numeric patterns Repeating Patterns 4m80 Extend and create repeating patterns that result from reflections, through investigation using a variety of tools Geometry and Spatial Sense Overall: 4m60 Patterning and Algebra Overall: 4m74	5m59 Identify, perform, and describe translations, using a variety of tools 5 m 60 Create and analyse designs by translating and/or reflecting a shape, or shapes, using a variety of tools 5 m 63 Create, identify, and extend numeric and geometric patterns, using a variety of tools 5 m 66 Make predictions related to growing and shrinking geometric and numeric patterns 5m67 Extend and create repeating patterns that result from translations, through investigation using a variety of tools Geometry and Spatial Sense Overall: 5m48 Patterning and Algebra Overall: 5m61	clockwise rotations of 90°, with the centre of rotation inside or outside the shape Peg Rotation 6 m 54 Create and analyse designs made by reflecting, translating, and/or rotating a shape, or shapes, by 900 or Polygon Pictures 6 m62 Extend and create repeating patterns that result from rotations, through investigation using a variety of tools Geometry and Spatial Sense Overall: 6m45 Patterning and Algebra Overall: 6m55	7 m 53 Distinguish between and compare similar shapes and congruent shapes, using a variety of tools and strategies 7 m 54 Plot points using all four quadrants of the Cartesian coordinate plane 7 m 55 Identify, perform, and describe dilatations (i.e., enlargements and reductions), through investigation using a variety of tools Who is the fairest of them all? 7m56 Create and analyse designs involving translations, reflections, dilatations, and/or simple rotations of two-dimensional shapes, using a variety of tools and strategies Reflecting Squarely Attractive Rotations Robotic Rotations	movements that are translations, reflections, and rotations Geometry and Spatial Sense Overall: 8m42

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
			7 m 57 Determine, through investigation using a variety of tools, polygons or combinations of polygons that tile a plane, and describe the transformation(s) involved Semi-regular Tessellations Polygon Rings Geometry and Spatial Sense Overalls: 7m44, 7m45	
Patterning				
Numeric Patterns 4m76 Extend, describe, and create repeating, growing, and shrinking number patterns Tables without Tens Carrying Cards 4 m 77 Connect each term in a growing or shrinking pattern with its term number, and record the patterns in a table of values that shows the term number and the term	Numeric Patterns 5m63 Create, identify, and extend numeric and geometric patterns, using a variety of tools Tables without Tens Carrying Cards 5m64 Build a model to represent a number pattern presented in a table of values that shows the term number and the term 5 m 65 Make a table of values for a pattern that is	Numeric Patterns 6 m 57 Identify geometric patterns, through investigation using concrete materials or drawings, and represent them numerically Cuisenaire Spirals Up and Down Staircases Sticky Triangles 6 m 58 Make tables of values, for growing patterns given pattern rules, in words, then list the ordered pairs (with the first coordinate	Linear Growing Patterns 7m60 Represent linear growing patterns, using a variety of tools and strategies 7m61 Make predictions about linear growing patterns, through investigation with concrete materials 7m62 Develop and represent the general term of a linear growing pattern, using	Linear Relationships 8m56 Represent, through investigation with concrete materials, the general term of a linear pattern, using one or more algebraic expressions Special Numbers 8m57 Represent linear patterns graphically (i.e., make a table of values that shows the term number and the term, and plot the

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4

Grade 6
representing the term number and the second coordinate representing the term) and plot the points in the first quadrant, using a variety of tools 6 m 59 Determine the term number of a given term in a growing pattern that is represented by a pattern rule in words, a table of values, or a graph 6 m 60 Describe pattern rules (in words) that generate patterns by adding or subtracting a constant, or multiplying or dividing by a constant, to get the next term, then distinguish such pattern rules from pattern rules, given in words, that describe the general term by referring to the term number Exploring Number Patterns You Make
Tables without Tens
Carrying Cards

Grade 7
algebraic expressions involving one operation 7m63 Compare pattern rules that generate a pattern by adding or subtracting a constant, or multiplying or dividing by a constant, to get the next term with pattern rules that use the term number to describe the general term
Special Numbers
7 m 64 Model real-life relationships involving constant rates where the initial condition starts at 0 , through investigation using tables of values and graphs 7m65 Model real-life relationships involving constant rates, using algebraic equations with variables to represent the changing quantities in the relationship 7m66 Translate phrases describing simple

Grade 8
coordinates on a graph), using a variety of tools Functions and Graphs - Short Problems
8m58 Determine a term, given its term number, in a linear pattern that is represented by a graph or an algebraic equation 8m60 Model linear relationships using tables of values, graphs, and equations, through investigation using a variety of tools
8m63 Make connections between solving equations and determining the term number in a pattern, using the general term Printing Error

Patterning and Algebra Overalls: 8m54, 8m55

With thanks to Debbie Lajoie
Please email any comments to primary.nrich@maths.org

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada
 http://nrich.maths.org

Problems have detailed teachers' resources suggesting how they can be integrated into lessons

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
			and $a x+b=c$ or variations such as $b+a x=c$ and $c=b x$ $+a$ (where a, b, and c are natural numbers) by modelling with concrete materials, by inspection, or by guess and check, with and without the aid of a calculator The Simple Life Patterning and Algebra Overalls: 7m58, 7m59	
Algebra				
		Equality - Unknown Quantities 6 m63 Demonstrate an understanding of different ways in which variables are used $6 m 64$ Identify, through investigation, the quantities in an equation that vary and those that remain constant Diagonal Sums 6 m 65 Solve problems that use two or three symbols or	Unknown Quantities 7m66 Translate phrases describing simple mathematical relationships into algebraic expressions, using concrete materials Quadratic Patterns Number Pyramids Your Number Is Summing Consecutive Numbers Shifting Times Tables Seven Squares	Unknown Quantities 8 m 51 Determine, through investigation using concrete materials, the relationship between the numbers of faces, edges, and vertices of a polyhedron (i.e., number of faces + number of vertices $=$ number of edges +2) 8m59 Describe different ways in which algebra can be used in real-life situations

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada
 http://nrich.maths.org

Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
		letters as variables to represent different unknown quantities $6 m 66$ Determine the solution to a simple equation with one variable, through investigation using a variety of tools and strategies Interactive Number Patterns Patterning and Algebra Overall: 6m56 Two and Two Price Match	Odds, Evens and More Evens 7m67 Evaluate algebraic expressions by substituting natural numbers for the variables The Simple Life Fruity Totals Shape Products 7 m 69 Solve linear equations of the form $\mathrm{ax}=\mathrm{c}$ or $\mathrm{c}=\mathrm{ax}$ and $a x+b=c$ or variations such as $b+a x=c$ and $c=b x$ $+a$ (where a, b, and c are natural numbers) by modelling with concrete materials, by inspection, or by guess and check, with and without the aid of a calculator Creating and Manipulating Linear and Quadratic Expressions - Short Problems Patterning and Algebra Overall: 7m59	8m61 Translate statements describing mathematical relationships into algebraic expressions and equations Litov's Mean Value Theorem 8m62 Evaluate algebraic expressions with up to three terms, by substituting fractions, decimals, and [positive] integers for the variables 8 m 64 Solve and verify linear equations involving a onevariable term and having solutions that are [positive] integers by using inspection, guess and check, and a "balance model" Functions and Graphs - Short Problems Geometry and Spatial Sense Overall: 8m41 Patterning and Algebra Overall: 8m55
Data Management				

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Collect, Organize, Display and Interpret Categorical Data 4m88 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or the community, or content from another subject, and record observations or measurements Compare the Squares Real Statistics 4 m 89 Collect and organize discrete primary data and display the data in charts, tables, and graphs (including stem-and-leaf plots and double bar graphs) that have appropriate titles, labels and scales that suit the range and distribution of the data, using a variety of tools Our Sports The Car That Passes	Collect, Organize, and Display Primary Data 5m75 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject, and record observations or measurements Compare the Squares Real Statistics 5 m 76 Collect and organize discrete or continuous primary data and secondary data and display the data in charts, tables, and graphs (including broken-line graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools Our Sports The Car That Passes	Collect, Organize and Display Primary and Secondary Data 6 m 70 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject, and record observations or measurements Compare the Squares Real Statistics 6 m 71 Collect and organize discrete or continuous primary data and secondary data and display the data in charts, tables, and graphs (including continuous line graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools Our Sports	Collect, Organize and Display Data 7m73 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject and record observations or measurements Our Sports The Car That Passes 7 m 74 Collect and organize categorical, discrete, or continuous primary data and secondary data and display the data in charts, tables, and graphs (including relative frequency tables and circle graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools	Collect, Organize and Display Data 8m68 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject, and record observations or measurements 8m69 Organize into intervals a set of data that is spread over a broad range 8 m 70 Collect and organize categorical, discrete, or continuous primary data and secondary data, and display the data in charts, tables, and graphs (including histograms and scatter plots) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
4m90 Read, interpret, and draw conclusions from primary data and from secondary data presented in charts, tables, and graphs (including stem-and-leaf plots and double bar graphs) Data Management and Probability Overalls: 4m85, 4m86	Data Management and Probability Overall: 5m71	The Car That Passes 6 m 72 Select an appropriate type of graph to represent a set of data, graph the data using technology, and justify the choice of graph (i.e., from types of graphs already studied, such as pictographs, horizontal or vertical bar graphs, stem-and-leaf plots, double bar graphs, brokenline graphs, and continuous line graphs) 6m73 Determine, through investigation, how well a set of data represents a population, on the basis of the method that was used to collect the data How Big Are Classes 5, 6 and 7? Data Management and Probability Overall: 6m67	Tools for Thinking about Probability 7 m 75 Select an appropriate type of graph to represent a set of data, graph the data using technology, and justify the choice of graph (i.e., from types of graphs already studied) Fill Me Up 7m76 Distinguish between a census and a sample from a population 7m77 Identify bias in data collection methods Data Management and Probability Overall: 7m70	Tools for Thinking about Probability 8 m 71 Select an appropriate type of graph to represent a set of data, graph the data using technology, and justify the choice of graph (i.e., from types of graphs already studied, including histograms and scatter plots); - explain the relationship between a census, a representative sample, sample size, and a population 8m75 Demonstrate an understanding of the appropriate uses of bar graphs and histograms by comparing their characteristics Data Management and Probability Overalls: 8m65, 8m66
Collect, Organize, Display and Interpret Numerical Data	Collect, Organize, Display, and Interpret Numerical Data	Interpret Data 6 m 74 Read, interpret, and draw conclusions from	Data Analysis and Interpretation	Data Analysis and Interpretation

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grad	Gra	Grade 6	Grade 7	Grade 8
4 m 88 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or the community, or content from another subject, and record observations or measurements Real Statistics Going for Gold 4 m 89 Collect and organize discrete primary data and display the data in charts, tables, and graphs (including stem-and-leaf plots and double bar graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools 4m90 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs	5m74 Distinguish between discrete data (i.e., data organized using numbers that have gaps between them, such as whole numbers, and often used to represent a count, such as the number of times a word is used) and continuous data (i.e., data organized using all numbers on a number line that fall within the range of the data, and used to represent measurements such as heights or ages of trees) 5m75 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject, and record observations or measurements Real Statistics Going for Gold	primary data and from secondary data, presented in charts, tables, and graphs (including continuous line graphs) Real Statistics Going for Gold Presenting the Project 6m75 Compare, through investigation, different graphical representations of the same data Match the Matches If the World Were a Village $6 m 76$ Explain how different scales used on graphs can influence conclusions drawn from the data How Big are Classes 5, 6, and 근 6m77 Demonstrate an understanding of mean, and use the mean to compare two sets of related data, with and without the use of technology Match the Matches	7m75 Select an appropriate type of graph to represent a set of data, graph the data using technology, and justify the choice of graph (i.e., from types of graphs already studied) Fill Me Up 7m76 Distinguish between a census and a sample from a population 7 m 77 Identify bias in data collection methods 7m78 Read, interpret, and draw conclusions from primary data and from secondary data presented in charts, tables, and graphs (including relative frequency tables and circle graphs) Bat Wings What's the Weather Like? 7 m 79 Identify, through investigation, graphs that present data in misleading ways	8m72 Explain the relationship between a census, a representative sample, sample size, and a population 8m73 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs (including frequency tables with intervals, histograms, and scatter plots) Bat Wings What's the Weather Like? 8m74 Determine, through investigation, the appropriate measure of central tendency (i.e., mean, median, or mode) needed to compare sets of data M, M and M Unequal Averages 8m76 Compare two attributes or characteristics using a scatter plot, and determine whether or not

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
(including stem-and-leaf plots and double bar graphs) Presenting the Project 4m91 Demonstrate, through investigation, an understanding of median and determine the median of a set of data 4 m 92 Describe the shape of a set of data across its range of values, using charts, tables, and graphs 4m93 Compare similarities and differences between two related sets of data, using a variety of strategies Now and Then	5m76 Collect and organize discrete or continuous primary data and secondary data and display the data in charts, tables, and graphs (including broken-line graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools 5m77 Demonstrate an understanding that sets of data can be samples of larger populations If the World Were a Village 5m78 Describe, through investigation, how a set of data is collected and explain whether the collection method is appropriate 5m79 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs (including broken-line graphs)	The Mean Problem 6m78 Demonstrate, through investigation, an understanding of how data from charts, tables, and graphs can be used to make inferences and convincing arguments If the World Were a Village Going for Gold Presenting the Project Data Management Overall: 6m68	7 m 80 Determine, through investigation, the effect on a measure of central tendency (i.e., mean, median, and mode) of adding or removing a value or values Unequal Averages Average Temperature M, M and M 7 m81 Identify and describe trends, based on the distribution of the data, presented in tables and graphs, using informal language 7m82 Make inferences and convincing arguments that are based on the analysis of charts, tables, and graphs Bat Wings Data Management and Probability Overalls: 7m70, 7m71	the scatter plot suggests a relationship 8 m 77 Identify and describe trends, based on the rate of change of data from tables and graphs, using informal language Journey to School 8m78 Make inferences and convincing arguments that are based on the analysis of charts, tables, and graphs Bat Wings 8m79 Compare two attributes of characteristics, using a variety of data management tools and strategies (i.e., pose a relevant question, then design an experiment or survey, collect and analyse the data, and draw conclusions) Data Management and Probability Overalls: 8m65, 8m66

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
	Presenting the Project 5 m 80 Calculate the mean for a small set of data and use it to describe the shape of the data set across its range of values, using charts, tables, and graphs Match the Matches 5m81 Compare similarities and differences between two related sets of data, using a variety of strategies Now and Then Data Management Overalls: 5m71, 5m72			
Probability				
Probability 4m88 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or the community, or content from another subject, and record	Probability 5m16 Represent, compare, and order fractional amounts with like denominators, including proper and improper fractions and mixed numbers, using a variety of tools and using standard fractional	Probability 6m70 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject, and record	Probability 7m73 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject and record	Probability 8 m 68 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject and record

With thanks to Debbie Lajoie
Please email any comments to primary.nrich@maths.org

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grad	Gra	Grade 6	Grade 7	Grade 8
observations or measurements 4 m 89 Collect and organize discrete primary data and display the data in charts, tables, and graphs (including stem-and-leaf plots and double bar graphs) that have appropriate titles, labels and scales that suit the range and distribution of the data, using a variety of tools 4 m 90 Read, interpret, and draw conclusions from primary data and from secondary data presented in charts, tables, and graphs (including stem-and-leaf plots and double bar graphs) 4m94 Predict the frequency of an outcome in a simple probability experiment, explaining their reasoning; conduct the experiment; and compare the result with the prediction Same or Different?	notation 5m75 Collect data by conducting a survey or an experiment to do with themselves, their environment, issues in their school or community, or content from another subject, and record observations or measurements 5 m 76 Collect and organize discrete or continuous primary data and secondary data and display the data in charts, tables, and graphs (including broken-line graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools 5 m 79 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs (including broken-line graphs)	observations or measurements 6 m 71 Collect and organize discrete or continuous primary data and secondary data and display the data in charts, tables, and graphs (including continuous line graphs) that have appropriate titles, labels, and scales that suit the range and distribution of the data, using a variety of tools Tools for Thinking about Probability 6m74 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs (including continuous line graphs) 6m79 Express theoretical probability as a ratio of the number of favourable outcomes to the total number of possible	observations or measurements 7 m 74 Collect and organize categorical, discrete, or continuous primary data and secondary data and display the data in charts, tables, and graphs (including relative frequency tables and circle graphs) that have appropriate titles, labels and scales that suit the range and distribution of the data, using a variety of tools Tools for Thinking about Probability 7m78 Read, interpret, and draw conclusions from primary data and from secondary data presented in charts, tables, and graphs (including relative frequency tables and circle graphs) 7 m 83 Research and report on real-world applications of probabilities expressed in	observations or measurements 8 m 70 Collect and organize categorical, discrete, or continuous primary data and secondary data and display the data in charts, tables, and graphs (including histograms and scatter plots) that have appropriate titles, labels, and scales that suit the range and distribution of data, using a variety of tools Tools for Thinking about Probability 8m73 Read, interpret, and draw conclusions from primary data and from secondary data, presented in charts, tables, and graphs (including frequency tables with intervals, histograms and scatter plots) 8m80 Compare, through investigation, the theoretical probability of an event (i.e., the ratio of the number of

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4
4m95 Determine, through investigation, how the number of repetitions of a probability experiment can affect the conclusions drawn It's a Tie
Three Spinners
Data Management Overall:
4m85, 4m86, 4m87

Grade 5
5m82 Determine and represent all the possible outcomes in a simple probability experiment, using systematic lists and area models
Same or Different?
5m83 Represent, using a common fraction, the probability that an event will occur in simple games and probability experiments 5 m 84 Pose and solve simple probability problems, and solve them by conducting probability experiments and selecting appropriate methods of recording the results Same or Different? It's a Tie

Number Sense and
Numeration Overall: 5m8
Data Management Overalls: 5m71, 5m72, 5m73

Grade 7
fraction, decimal, and percent form
Statistical Shorts
7 m 84 Make predictions about a population when given a probability
7m85 Represent in a variety of ways all the possible outcomes of a probability experiment involving two independent events (i.e., one event does not affect the other event), and determine the theoretical probability of a specific outcome involving two independent events Strange Dice
7m86 Perform a simple probability experiment involving two independent events, and compare the experimental probability with the theoretical probability of a specific outcome
nteractive Spinners

Grade 8
outcomes, where all outcomes are equally likely It's a Tie
6m80 Represent the probability of an event (i.e., the likelihood that the event will occur), using a value from the range of 0 (never happens or impossible) to 1 (always happens or certain) Same or Different?
6 m 81 Predict the frequency of an outcome of a simple probability experiment or game, by calculating and using the theoretical probability of that outcome Statistical Shorts
Same or Different?
Interactive Spinners

Data Management Overalls: 6m67, 6m68, 6m69

NRICH tasks mapped to the mathematics curriculum in Ontario, Canada

http://nrich.maths.org
Problems have detailed teachers' resources suggesting how they can be integrated into lessons

Grade 4	Grade 5	Grade 6	Grade 7	Grade 8
			Data Management and Probability Overalls: 7m70, 7m71, 7m72	that a given event will not occur Data Management and Probability Overalls: 8m65, 8m66, 8m67

