Discriminating

ALWAYS, SOMETIMES or NEVER true: $a x^{2}+b x+c=0$
(Page 1 of 2)
(1)

CMEP - Discriminating
If $a<0$, then the equation has no real roots.
(2)

CMEP - Discriminating
If $b^{2}-4 a c=0$, then the equation has one repeated real root.
(3)

CMEP - Discriminating
If the equation has no real roots, then the equation $a x^{2}+b x-c=0$ has two distinct real roots.
(4)

CMEP - Discriminating
If $\frac{b^{2}}{a}<4 c$, then the equation has two distinct real roots.
(5)

CMEP - Discriminating
If $b=0$, then the equation has one repeated real root.
(6)

CMEP - Discriminating
The equation has three real roots.

Discriminating

ALWAYS, SOMETIMES or NEVER true: $a x^{2}+b x+c=0$
(Page 2 of 2)
(7)

CMEP - Discriminating
If $c=0$, then the equation has no real roots.
(8)

CMEP - Discriminating
The equation has the same number of real roots as

$$
a x^{2}-b x+c=0 .
$$

(9)

CMEP - Discriminating
If the equation has two distinct real roots, then $a c<\frac{b^{2}}{4}$.
(10)

CMEP - Discriminating

If $c>0$, then the equation has two distinct real roots.

The equation has the same number of real roots as the equation $c x^{2}+b x+a=0$.

If the equation has no real roots, then the equation $-a x^{2}-b x-c=0$ has two distinct real roots.

