
 

STEP Solutions 
2010 
 
Mathematics 
STEP 9465/9470/9475 
 
 
October 2010 



The Cambridge Assessment Group is Europe's largest assessment agency 
and plays a leading role in researching, developing and delivering 
assessment across the globe. Our qualifications are delivered in over 150 
countries through our three major exam boards. 
 
Cambridge Assessment is the brand name of the University of Cambridge 
Local Examinations Syndicate, a department of the University of Cambridge. 
Cambridge Assessment is a not-for-profit organisation. 
 
This mark scheme is published as an aid to teachers and students, to indicate 
the requirements of the examination. It shows the basis on which marks were 
awarded by the Examiners. It does not indicate the details of the discussions 
which took place at an Examiners’ meeting before marking commenced. 
 
All Examiners are instructed that alternative correct answers and unexpected 
approaches in candidates’ scripts must be given marks that fairly reflect the 
relevant knowledge and skills demonstrated. 
 
Mark schemes should be read in conjunction with the published question 
papers and the Report on the Examination. 
 
Cambridge Assessment will not enter into any discussion or correspondence 
in connection with this mark scheme. 
 
© UCLES 2010 
 
More information about STEP can be found at: 
http://www.atsts.org.uk  

http://www.atsts.org.uk/


Contents 
 
STEP Mathematics (9465, 9470, 9475) 
 
Report Page
STEP Mathematics I  4
STEP Mathematics II 44
STEP Mathematics III 54
 



Question 1

Given that

5x2 + 2y2 − 6xy + 4x− 4y ≡ a(x− y + 2)2 + b(cx+ y)2 + d,

find the values of the constants a, b, c and d.

We expand the right hand side, and then equate coefficients:

5x2 + 2y2−6xy + 4x− 4y

≡ a(x− y + 2)2 + b(cx+ y)2 + d

≡ a(x2 − 2xy + y2 + 4x− 4y + 4) + b(c2x2 + 2cxy + y2) + d

≡ (a+ bc2)x2 + (2bc− 2a)xy + (a+ b)y2 + 4ax− 4ay + 4a+ d,

so we require

a+ bc2 = 5

2bc− 2a = −6

a+ b = 2

4a = 4

−4a = −4

4a+ d = 0.

The fourth and fifth equations both give a = 1 immediately, giving b = 1 from the third
equation. Then the second equation gives c = −2 and the final equation gives d = −4.

We must also check that this solution is consistent with the first equation. We have
a + bc2 = 1 + 1 × (−2)2 = 5, as required. (Why is this necessary? Well, if the second
equation had begun with 7x2 + · · · , then our method would still have given us a = 1, etc.,
but the coefficients for the x2 term would not have matched, so we would not have been
able to write the second equation in the same way as the first.)

We thus deduce that

5x2 + 2y2 − 6xy + 4x− 4y ≡ (x− y + 2)2 + (−2x+ y)2 − 4.

Solve the simultaneous equations

5x2 + 2y2 − 6xy + 4x− 4y = 9, (1)

6x2 + 3y2 − 8xy + 8x− 8y = 14. (2)

Spurred on by our success in the first part, we will rewrite the first equation in the
suggested form:

(x− y + 2)2 + (y − 2x)2 − 4 = 9. (3)



We are led to wonder whether the same trick will work for the second equation, so let’s
try writing:

6x2 + 3y2 − 8xy + 8x− 8y ≡ a(x− y + 2)2 + b(cx+ y)2 + d.

As before, we get equations:

a+ bc2 = 6

2bc− 2a = −8

a+ b = 3

4a = 8

−4a = −8

4a+ d = 0.

(We can write these down as the right hand side is the same as before.)

This time, a = 2 from both the fourth and fifth equations, so we get b = 1 from the
third equation. The second equation gives us c = −2. Finally, the sixth equation gives
us d = −8.

We must now check that our solution is consistent with the first equation, which we have
not yet used. The left hand side is a + bc2 = 2 + 1× (−2)2 = 6, which works, so we can
write the second equation as

2(x− y + 2)2 + (y − 2x)2 − 8 = 14.

(If we had not checked for consistency, we might have wrongly concluded that 183x2 +
3y2 − 8xy + 8x− 8y can also be written in the same way.)

These two equations now look remarkably similar! In fact, let’s move the constants to the
right hand side and write them together:

(x− y + 2)2 + (y − 2x)2 = 13

2(x− y + 2)2 + (y − 2x)2 = 22.

We now have two simultaneous equations which look almost linear. In fact, if we write
u = (x− y + 2)2 and v = (y − 2x)2, we get

u+ v = 13

2u+ v = 22

which we can easily solve to get u = 9 and v = 4.

Therefore, we now have to solve the two equations

(x− y + 2)2 = 9 (4)

(y − 2x)2 = 4. (5)

We can take square roots, so that (4) gives x− y + 2 = ±3 and (5) gives y − 2x = ±2.



Thus we now have four possibilities (two from equation (4), and for each of these, two from
equation (5)), and we solve each one, checking our results back in the original equations.

2x− y x− y + 2 x y LHS of (1) LHS of (2)
2 3 1 0 9 14
2 −3 7 12 9 14
−2 3 −3 −4 9 14
−2 −3 3 8 9 14

Therefore we see that the four solutions are (x, y) = (1, 0), (7, 12), (−3,−4) and (3, 8).

An alternative is to observe that equation (2) looks almost double equation (1), so we
consider 2× (1)− (2):

4x2 + y2 − 4xy = 4.

But the left hand side is simply (2x− y)2, so we get 2x− y = ±2.

Substituting this into equation (3) gives us

(x− y + 2)2 + 4− 4 = 9,

so that x− y + 2 = ±3.

Thus we have the four possibilities we found in the first approach, and we continue as
above.

Yet another alternative approach is to subtract (2)− (1) to get

x2 + y2 − 2xy + 4x− 4y = 5,

so that
(x− y)2 + 4(x− y) = 5.

Writing z = x− y, we get the quadratic z2 + 4z − 5 = 0, which we can then factorise to
give (z + 5)(z − 1) = 0, so either z = 1 or z = −5, which gives x− y = 1 or x− y = −5.

Substituting x− y = 1 into (3) now gives

(1 + 2)2 + (y − 2x)2 − 4 = 9,

so that (y − 2x)2 = 4; substituting x− y = −5, on the other hand, would lead us to

(−5 + 2)2 + (y − 2x)2 − 4 = 9,

and again we deduce (y − 2x)2 = 4.

We have again reached the same deductions as in the first approach, so we continue from
there.



Question 2

The curve y =
(x− a
x− b

)
ex, where a and b are constants, has two stationary points.

Show that
a− b < 0 or a− b > 4.

We begin by differentiating using first the product rule and then the quotient rule:

dy

dx
=

d

dx

(
x− a
x− b

)
ex +

(x− a)

(x− b) ex

=
(x− b).1− (x− a).1

(x− b)2
ex +

(x− a)

(x− b) ex

=
(a− b)
(x− b)2

ex +
(x− a)(x− b)

(x− b)2
ex

=
x2 − (a+ b)x+ (ab+ a− b)

(x− b)2
ex.

Now solving dy
dx

= 0 gives x2−(a+b)x+(ab+a−b) = 0. Since the curve has two stationary
points, this quadratic must have two distinct real roots. Therefore the discriminant must
be positive, that is

(a+ b)2 − 4(ab+ a− b) > 0,

and expanding gives a2 − 2ab + b2 − 4a + 4b > 0, so (a− b)2 − 4(a− b) > 0. Factorising
this last expression gives

(a− b)(a− b− 4) > 0,

so (sketching a graph to help, possibly also replacing a− b with a variable like x), we see
that we must either have a− b < 0 or a− b > 4.

(i) Show that, in the case a = 0 and b = 1
2
, there is one stationary point on either

side of the curve’s vertical asymptote, and sketch the curve.

We are studying the curve y =
( x

x− 1
2

)
ex.

We have a − b = −1
2
< 0, so the curve has two stationary points by the first part of the

question. The x-coordinates of the stationary points are found by solving the quadratic

x2 − (a+ b)x+ (ab+ a− b) = 0,

as above.

Substituting in our values for a and b, we get x2 − 1
2
x − 1

2
= 0, so 2x2 − x − 1 = 0,

which factorises to (x − 1)(2x + 1) = 0. Thus there are stationary points at (1, 2e) and
(−1

2
, 1

2
e−1/2).

The vertical asymptote is at x = b, that is at x = 1
2
.



Therefore, since the two stationary points are at x = 1 and x = −1
2
, there is one stationary

point on either side of the curve’s vertical asymptote.

We note that the only time the curve crosses the x-axis is when x = a, so this is when
x = 0, and this is also the y-intercept in this case.

As x → ±∞, y ∼ ex (meaning y is approximately equal to ex; formally, we say that y is
asymptotically equal to ex), as the fraction (x− a)/(x− b) tends to 1.

We can also note where the curve is positive and negative: since ex is always positive,
y > 0 whenever both x− a > 0 and x− b > 0, or when both x− a < 0 and x− b < 0, so
y < 0 when x lies between a and b and is positive or zero otherwise.

Using all of this, we can now sketch the graph of the function. The nature of the stationary
points will become clear from the graphs. In the graph, the dotted lines are the asymptotes
(x = 1

2
and y = ex) and the red line is the graph we want, with the stationary points

indicated.

y

x0

(1, 2e)

(−1
2
, 1

2
e−1/2)

1
2

(ii) Sketch the curve in the case a = 9
2

and b = 0.

This time, we are studying the curve y =
(x− 9

2

x

)
ex.

Proceeding as in (i), we have a− b = 9
2
> 4, so again, the curve has two stationary points.

The x-coordinates of the stationary points are given by solving the quadratic

x2 − (a+ b)x+ (ab+ a− b) = 0,

as above.

Substituting our values, we get x2 − 9
2
x + 9

2
, so 2x2 − 9x + 9 = 0. Again, this factorises

nicely to (x− 3)(2x− 3) = 0, giving stationary points at (3
2
,−2e3/2) and (3,−1

2
e3).

The vertical asymptote is at x = b, that is at x = 0. This time, therefore, the stationary
points are both to the right of the vertical asymptote.

The x-intercept is at x = a, that is, at (9
2
, 0). There is no y-intercept as x = 0 is an

asymptote.

Again, as x→ ±∞, y ∼ ex.



As in (i), y < 0 when x lies between a and b and is positive or zero otherwise.

Using all of this, we can now sketch the graph of this function. Note that the asymptote
y = ex is much greater than y until x is greater than 20 or so, as even then (x−a)/(x−b) ≈
15/20, and only slowly approaches 1. We don’t even attempt to sketch the function for
such large values of x!

y

x0

(3
2
, −2e3/2)

(3,−1
2
e3)

9
2



Question 3

Show that
sin(x+ y)− sin(x− y) = 2 cosx sin y

and deduce that
sinA− sinB = 2 cos 1

2
(A+B) sin 1

2
(A−B).

We use the compound angle formulæ (also called the addition formulæ) to expand the
left hand side, getting:

sin(x+ y)− sin(x− y) = (sinx cos y + cosx sin y)− (sinx cos y − cosx sin y)

= 2 cos x sin y,

as required.

For the deduction, we want A = x+y and B = x−y, so x = 1
2
(A+B) and y = 1

2
(A−B),

solving these two equations simultaneously to find x and y. Then we simply substitute
these values of x and y into our previous identity, and we reach the desired conclusion:

sinA− sinB = 2 cos 1
2
(A+B) sin 1

2
(A−B).

(This identity is known as one of the factor formulæ.)

Show also that
cosA− cosB = −2 sin 1

2
(A+B) sin 1

2
(A−B).

Likewise, we have

cos(x+ y)− cos(x− y) = (cos x cos y − sinx sin y)− (cosx cos y + sinx sin y)

= −2 sinx sin y,

so again substituting x = 1
2
(A+B) and y = 1

2
(A−B) gives

cosA− cosB = −2 sin 1
2
(A+B) sin 1

2
(A−B).



The points P , Q, R and S have coordinates (a cos p, b sin p), (a cos q, b sin q),
(a cos r, b sin r) and (a cos s, b sin s) respectively, where 0 6 p < q < r < s < 2π,
and a and b are positive.

Given that neither of the lines PQ and SR is vertical, show that these lines are parallel
if and only if

r + s− p− q = 2π.

Remark: The points P , Q, R and S all lie on an ellipse, which can be thought of as a
stretched circle, as their coordinates all have x

a
= cos θ and y

b
= sin θ, so they satisfy the

equation
(
x
a

)2
+
(
y
b

)2
= 1.

The lines PQ and SR are parallel if and only if their gradients are equal (and neither are
vertical, so their gradients are well-defined), thus

PQ ‖ RS ⇐⇒ b sin q − b sin p

a cos q − a cos p
=

b sin s− b sin r

a cos s− a cos r

⇐⇒ sin q − sin p

cos q − cos p
=

sin s− sin r

cos s− cos r

⇐⇒ 2 cos 1
2
(q + p) sin 1

2
(q − p)

−2 sin 1
2
(q + p) sin 1

2
(q − p) =

2 cos 1
2
(s+ r) sin 1

2
(s− r)

−2 sin 1
2
(s+ r) sin 1

2
(s− r)

⇐⇒ cos 1
2
(q + p)

− sin 1
2
(q + p)

=
cos 1

2
(s+ r)

− sin 1
2
(s+ r)

⇐⇒ cot 1
2
(q + p) = cot 1

2
(s+ r)

⇐⇒ 1
2
(q + p) = 1

2
(s+ r) + kπ for some k ∈ Z

⇐⇒ q + p = s+ r + 2kπ for some k ∈ Z
⇐⇒ r + s− p− q = 2nπ for some n ∈ Z.

The last four lines could have also been replaced by the following:

PQ ‖ RS ⇐⇒ · · ·

⇐⇒ cos 1
2
(q + p)

− sin 1
2
(q + p)

=
cos 1

2
(s+ r)

− sin 1
2
(s+ r)

⇐⇒ cos 1
2
(q + p) sin 1

2
(s+ r) = cos 1

2
(s+ r) sin 1

2
(q + p)

⇐⇒ sin 1
2
(s+ r) cos 1

2
(q + p)− cos 1

2
(s+ r) sin 1

2
(q + p) = 0

⇐⇒ sin 1
2
((q + p)− (s+ r)) = 0

⇐⇒ 1
2
(q + p− s− r) = π for some k ∈ Z

⇐⇒ r + s− p− q = 2nπ for some n ∈ Z.

We are almost there; we now only need to show n = 1 in the final line. We know that
0 6 p < q < r < s < 2π, so r+s < 4π and 0 < p+q < r+s, so that 0 < r+s−p−q < 4π,
which means that n must equal 1 if PQ and RS are parallel.

Thus PQ and RS are parallel if and only if r + s− p− q = 2π.



Question 4

Use the substitution x =
1

t2 − 1
, where t > 1, to show that, for x > 0,∫

1√
x(x+ 1)

dx = 2 ln
(√

x+
√
x+ 1

)
+ c.

[Note: You may use without proof the result

∫
1

t2 − a2
dt =

1

2a
ln

∣∣∣∣t− at+ a

∣∣∣∣+constant. ]

Using the given substitution, we first use the chain rule to calculate

dx

dt
= −(t2 − 1)−2 · 2t = − 2t

(t2 − 1)2
.

(We could alternatively have used the quotient rule to reach the same conclusion.)

We can now perform the requested substitution, simplifying the algebra as we go:∫
1√

x(x+ 1)
dx =

∫
1√

1
t2−1
· t2

t2−1

· dx

dt
dt

=

∫
1(
t

t2−1

) · −2t

(t2 − 1)2
dt

=

∫ −2

t2 − 1
dt

= −2× 1

2
ln

∣∣∣∣t− 1

t+ 1

∣∣∣∣+ c using the given result

= ln

∣∣∣∣ t+ 1

t− 1

∣∣∣∣+ c.

At this point, we wish to substitute t for x, so we rearrange the original substitution to
get

t =

√
1

x
+ 1 =

√
x+ 1

x
.

This now yields:

ln

∣∣∣∣ t+ 1

t− 1

∣∣∣∣+ c = ln

∣∣∣∣∣
√

x+1
x

+ 1√
x+1
x
− 1

∣∣∣∣∣+ c.

We note immediately that we can drop the absolute value signs, since both the numerator
and denominator of the fraction are positive (the denominator is positive as t > 1 or√

(x+ 1)/x > 1). So we get, on multiplying the numerator and denominator of the
fraction by

√
x to clear the fractions,



ln

∣∣∣∣ t+ 1

t− 1

∣∣∣∣+ c = ln

(√
x+ 1 +

√
x√

x+ 1−
√
x

)
+ c

= ln

((√
x+ 1 +

√
x
)(√

x+ 1 +
√
x
)(√

x+ 1−
√
x
)(√

x+ 1 +
√
x
))+ c

= ln

((√
x+ 1 +

√
x
)2

(x+ 1)− x

)
+ c

= ln
(√

x+ 1 +
√
x
)2

+ c

= 2 ln
(√

x+ 1 +
√
x
)

+ c,

which is what we were after.

The section of the curve

y =
1√
x
− 1√

x+ 1

between x = 1
8

and x = 9
16

is rotated through 360◦ about the x-axis. Show that the
volume enclosed is 2π ln 5

4
.

To find the volume of revolution, we need to calculate the definite integral
∫ 9/16

1/8
πy2 dx:∫ 9/16

1/8

πy2 dx

= π

∫ 9/16

1/8

(
1√
x
− 1√

x+ 1

)2

dx

= π

∫ 9/16

1/8

1

x
− 2

1√
x(x+ 1)

+
1

x+ 1
dx

= π
[
lnx− 4 ln

(√
x+
√
x+ 1

)
+ ln(x+ 1)

]9/16

1/8
using the above result

= π
(

ln 9
16
− 4 ln

(√
9
16

+
√

25
16

)
+ ln 25

16

)
− π

(
ln 1

8
− 4 ln

(√
1
8

+
√

9
8

)
+ ln 9

8

)
= π

(
2 ln 3

4
− 4 ln(3

4
+ 5

4
) + 2 ln 5

4

)
− π

(
2 ln 1

2
√

2
− 4 ln

(
1

2
√

2
+ 3

2
√

2

)
+ 2 ln 3

2
√

2

)
= π

(
(2 ln 3− 2 ln 4)− 4 ln 2 + (2 ln 5− 2 ln 4)

)
−

π
(
−2 ln(2

√
2)− 4 ln

√
2 + (2 ln 3− 2 ln(2

√
2)
)

= π(2 ln 3− 4 ln 2− 4 ln 2 + 2 ln 5− 4 ln 2)−
π(−3 ln 2− 2 ln 2 + 2 ln 3− 3 ln 2)

= π(−4 ln 2 + 2 ln 5)

= 2π(−2 ln 2 + ln 5)

= 2π ln 5
4
.



Question 5

By considering the expansion of (1 + x)n where n is a positive integer, or otherwise,
show that:

(i)

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
= 2n;

We take the advice and begin by writing out the expansion of (1 + x)n:

(1 + x)n =

(
n

0

)
x0 +

(
n

1

)
x1 +

(
n

2

)
x2 + · · ·+

(
n

n

)
xn, (∗)

where we have pedantically written in x0 and x1 in the first two terms, as this may well
help us to understand what we are looking at.

Now comparing this expansion to the expression we are interested in, we see that the only
difference is the presence of the xs. If we substitute x = 1, we will get exactly what we
want:

(1 + 1)n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n

)
,

as all powers of 1 are just 1.

(ii)

(
n

1

)
+ 2

(
n

2

)
+ 3

(
n

3

)
+ · · ·+ n

(
n

n

)
= n2n−1;

For the rest of the question, there are two very distinct approaches, one via calculus and
one via properties of binomial coefficients.

Approach 1: Use calculus

This one looks a little more challenging, and we must observe carefully that there is no(
n
0

)
term. Comparing to the binomial expansion, we see that the term

(
n
r

)
xr has turned

into
(
n
r

)
.r. Now, setting x = 1 will again remove the x, but where are we to get the r

from? Calculus gives us the answer: if we differentiate with respect to x, then xr becomes
rxr−1, and then setting x = 1 will complete the job. Now differentiating (∗) gives

n(1 + x)n−1 =

(
n

1

)
.1x0 +

(
n

2

)
.2x1 +

(
n

3

)
.3x2 + · · ·+

(
n

n

)
.nxn−1,

so by setting x = 1, we get the desired result.

Approach 2: Use properties of binomial coefficients

We know that (
n

r

)
=

n!

(n− r)!r!



so we can manipulate this formula to pull out an r, using r! = r.(r − 1)! and similar
expressions. We get (

n

r

)
=

n!

(n− r)!r!

=
1

r
.

n!

(n− r)!(r − 1)!

=
n

r
.

(n− 1)!

(n− r)!(r − 1)!

=
n

r

(
n− 1

r − 1

)
so that r

(
n
r

)
= n

(
n−1
r−1

)
. This is true as long as r > 1 and n > 1, so we get(

n

1

)
+ 2

(
n

2

)
+ · · ·+ n

(
n

n

)
= n

(
n− 1

0

)
+ n

(
n− 1

1

)
+ · · ·+ n

(
n− 1

n− 1

)
= n.2n−1

where we have used the result from part (i) with n− 1 in place of n to do the last step.

(iii)

(
n

0

)
+

1

2

(
n

1

)
+

1

3

(
n

2

)
+ · · ·+ 1

n+ 1

(
n

n

)
=

1

n+ 1

(
2n+1 − 1

)
;

Approach 1: Use calculus

Spurred on by our previous success, we see that now the
(
n
2

)
x2 term gives us

(
n
2

)
.1
3
, so we

think of integration instead. Integrating (∗) gives

1

n+ 1
(1 + x)n+1 =

(
n

0

)
.x1 +

(
n

1

)
.
1

2
x2 +

(
n

2

)
.
1

3
x3 + · · ·+

(
n

n

)
.

1

n+ 1
xn+1 + c .

We do need to determine the constant of integration, so we put x = 0 to do this; this
gives

1

n+ 1
1n+1 =

(
n

0

)
.0 +

(
n

1

)
.
1

2
.0 + + · · ·+

(
n

n

)
.

1

n+ 1
.0 + c,

so c = 1
n+1

. Now substituting x = 1 gives

1

n+ 1
(1 + 1)n+1 =

(
n

0

)
+

1

2

(
n

1

)
+ +

1

3

(
n

2

)
+ · · ·+ 1

n+ 1

(
n

n

)
+

1

n+ 1
.

Finally, subtracting 1
n+1

from both sides gives us our required result.

(An alternative way to think about this is to integrate both sides from x = 0 to x = 1.)

Approach 2: Use properties of binomial coefficients

We can try rewriting our identity so that the 1
r

stays with the r − 1 term; this gives us

1

n

(
n

r

)
=

1

r

(
n− 1

r − 1

)
.



Unfortunately, though, our expressions involve
(
n
r−1

)
terms rather than

(
n−1
r−1

)
terms, but

we can fix this by replacing n by n+ 1 to get

1

n+ 1

(
n+ 1

r

)
=

1

r

(
n

r − 1

)
.

We substitute this in to get(
n

0

)
+

1

2

(
n

1

)
+ · · ·+ 1

n+ 1

(
n

n

)
=

1

n+ 1

(
n+ 1

1

)
+

1

n+ 1

(
n+ 1

2

)
+ · · ·+ 1

n+ 1

(
n+ 1

n+ 1

)
=

1

n+ 1
(2n+1 − 1),

where we have again used the result of part (i), this time with n+ 1 replacing n.

(iv)

(
n

1

)
+ 22

(
n

2

)
+ 32

(
n

3

)
+ · · ·+ n2

(
n

n

)
= n(n+ 1)2n−2.

Approach 1: Use calculus

This looks similar to (ii), in that we have increasing multiples. So we try differentiating (∗)
twice, giving us:

n(n− 1)(1 + x)n−2 =

(
n

1

)
.1.0 +

(
n

2

)
.2.1x0 +

(
n

3

)
.3.2x1 + · · ·+

(
n

n

)
.n(n− 1)xn−2.

Unfortunately, though, the coefficient of
(
n
r

)
is r(r − 1) rather than the r2 we actually

want. But no matter: we can just add r and we will be done, as r2 = r(r − 1) + r, and
we know from (ii) what terms like

(
n
2

)
.2 sum to give us. So we have, putting x = 1 in our

above expression:

n(n− 1)(1 + 1)n−2 =

(
n

1

)
.1.0 +

(
n

2

)
.2.1 +

(
n

3

)
.3.2 + · · ·+

(
n

n

)
.n(n− 1).

Now adding the result of (ii) gives

n(n− 1)2n−2 + n2n−1 =

(
n

1

)
.(1.0 + 1) +

(
n

2

)
.(2.1 + 2) +

(
n

3

)
.(3.2 + 3) + · · ·+(

n

n

)
.(n(n− 1) + n)

so

(n(n− 1) + 2n)2n−2 =

(
n

1

)
+

(
n

2

)
.22 +

(
n

3

)
.32 + · · ·+

(
n

n

)
.n2.

The left side simplifies to n(n+ 1)2n−2, and thus we are done.



An alternative (calculus-based) method is as follows. The first derivative of (∗), as we
have seen, is

n(1 + x)n−1 =

(
n

1

)
.1x0 +

(
n

2

)
.2x1 +

(
n

3

)
.3x2 + · · ·+

(
n

n

)
.nxn−1.

Now were we to differentiate again, we would end up with terms like n(n− 1)xn−2, rather
than the desired n2xk (for some k). We can remedy this problem by multiplying the whole
identity by x before we differentiate, so that we are differentiating

nx(1 + x)n−1 =

(
n

1

)
.1x1 +

(
n

2

)
.2x2 +

(
n

3

)
.3x3 + · · ·+

(
n

n

)
.nxn.

Differentiating this now gives (using the product rule for the left hand side):

n(1+x)n−1 +n(n−1)x(1+x)n−2 =

(
n

1

)
.12x0 +

(
n

2

)
.22x1 +

(
n

3

)
.32x2 + · · ·+

(
n

n

)
.n2xn−1.

Substituting x = 1 into this gives our desired conclusion (after a small amount of algebra
on the left hand side).

Approach 2: Use properties of binomial coefficients

As this looks similar to the result of part (ii), we can start with what we worked out there,
namely r

(
n
r

)
= n

(
n−1
r−1

)
, giving us(

n

1

)
+22

(
n

2

)
+· · ·+n2

(
n

n

)
= n

(
n− 1

0

)
+n.2

(
n− 1

1

)
+n.3

(
n− 1

2

)
+· · ·+n.n

(
n− 1

n− 1

)
Taking out the factor of n leaves us having to work out(

n− 1

0

)
+ 2

(
n− 1

1

)
+ 3

(
n− 1

2

)
+ · · ·+ n

(
n− 1

n− 1

)
This looks very similar to the problem of part (ii) with n replaced by n− 1, but now the
multiplier of

(
n
r

)
is r + 1 rather than r, and there is also an

(
n
0

)
term. We can get over

the first problem by splitting up (r + 1)
(
n
r

)
as r

(
n
r

)
+
(
n
r

)
, so this expression becomes(

n− 1

1

)
+ 2

(
n− 1

2

)
+ · · ·+ (n− 1)

(
n− 1

n− 1

)
+(

n− 1

0

)
+

(
n− 1

1

)
+

(
n− 1

2

)
+ · · ·+

(
n− 1

n− 1

)
The first line is just part (ii) with n replaced by n−1, so that it sums to (n−1).2n−2, and
the second line is just 2n−1 = 2.2n−2 by part (i). So the answer to the original question
(remembering the factor of n we took out earlier) is

n
(
(n− 1).2n−2 + 2.2n−2

)
= n(n− 1 + 2).2n−2 = n(n+ 1).2n−2.



Question 6

Show that, if y = ex, then

(x− 1)
d2y

dx2
− xdy

dx
+ y = 0. (∗)

If y = ex, then
dy

dx
= ex and

d2y

dx2
= ex. Substituting these into the left hand side of (∗)

gives

(x− 1)
d2y

dx2
− xdy

dx
+ y = (x− 1)ex − xex + ex = 0,

so y = ex satisfies (∗).

In order to find other solutions of this differential equation, now let y = uex, where u
is a function of x. By substituting this into (∗), show that

(x− 1)
d2u

dx2
+ (x− 2)

du

dx
= 0. (∗∗)

We have y = uex, so we apply the product rule to get:

dy

dx
=

du

dx
ex + uex

=
(du

dx
+ u
)

ex

d2y

dx2
=
(d2u

dx2
ex +

du

dx
ex
)

+
(du

dx
ex + uex

)
=

d2u

dx2
ex + 2

du

dx
ex + uex

=
(d2u

dx2
+ 2

du

dx
+ u
)

ex.

(If you know Leibniz’s Theorem, then you could write down d2u/dx2 directly.)

We now substitute these into (∗) to get

(x− 1)
(d2u

dx2
+ 2

du

dx
+ u
)

ex − x
(du

dx
+ u
)

ex + uex = 0.

Dividing by ex 6= 0 and collecting the derivatives of u then gives

(x− 1)
d2u

dx2
+ (2x− 2− x)

du

dx
+ (x− 1− x+ 1)u = 0,

which gives (∗∗) on simplifying the brackets.



By setting
du

dx
= v in (∗∗) and solving the resulting first order differential equation

for v, find u in terms of x. Hence show that y = Ax+Bex satisfies (∗), where A and B
are any constants.

As instructed, we set
du

dx
= v, so that

d2u

dx2
=

dv

dx
, which gives us

(x− 1)
dv

dx
+ (x− 2)v = 0.

This is a standard separable first-order linear differential equation, so we separate the
variables to get

1

v

dv

dx
= −x− 2

x− 1

and then integrate with respect to x to get∫
1

v
dv =

∫
−x− 2

x− 1
dx.

Performing the integrations now gives us

ln |v| =
∫
−
(

1− 1

x− 1

)
dx

= −x+ ln |x− 1|+ c,

which we exponentiate to get

|v| = |k|e−x|x− 1|,

where k is some constant, so we finally arrive at

v = ke−x(x− 1).

We now recall that v = du/dx, so we need to integrate this last expression once more to
find u. We use integration by parts to do this, integrating the e−x part and differentiating
(x− 1), to give us

u =

∫
ke−x(x− 1) dx

= k(−e−x)(x− 1)−
∫
k(−e−x).1 dx

= k(−e−x)(x− 1)− ke−x + c

= −kxe−x + c,

which is the solution to (∗∗).
Now recalling that y = uex gives us y = −kx + c ex as our general solution to (∗). In
particular, letting k = −A and c = B, where A and B are any constants, shows that
y = Ax+Bex satisfies (∗), as required.



Question 7

Relative to a fixed origin O, the points A and B have position vectors a and b, respec-
tively. (The points O, A and B are not collinear.) The point C has position vector c
given by

c = αa + βb,

where α and β are positive constants with α + β < 1. The lines OA and BC meet
at the point P with position vector p, and the lines OB and AC meet at the point Q
with position vector q. Show that

p =
αa

1− β ,

and write down q in terms of α, β and b.

The condition c = αa + βb with α + β < 1 and α and β both positive constants means
that C lies strictly inside the triangle OAB. Can you see why?

We start by sketching the setup so that we have something visual to help us with our
thinking.

O
A

B

C

P

Q

R

S

The line OA has points with position vectors given by r1 = λa, and the line BC has
points with position vectors given by

r2 =
−−→
OB + µ

−−→
BC = b + µ(c− b) = (1− µ)b + µc.

The point P is where these two lines meet, so we must have

p = λa = (1− µ)b + µc

= (1− µ)b + µ(αa + βb)

= (1− µ+ βµ)b + αµa.



Since a and b are not parallel, we must have 1 − µ + βµ = 0 and αµ = λ. The first
equation gives (1− β)µ = 1, so µ = 1/(1− β). This gives λ = α/(1− β), so that

p =
αa

1− β .

Now swapping the roles of a and b (and hence also of α and β) will give us the position
vector of Q:

q =
βb

1− α.

Show further that the point R with position vector r given by

r =
αa + βb

α + β

lies on the lines OC and AB.

We could approach this question in two ways, either by finding the point of intersection
of OC and AB or by showing that the given point lies on both given lines. We give both
approaches.

Approach 1: Finding the point of intersection

We require r to lie on OC, so r = λc, and r to lie on AB, so r = (1−µ)a+µb, as before.
Substituting for c and equating coefficients gives

αλa + βλb = (1− µ)a + µb,

so that

αλ = 1− µ
βλ = µ.

Adding the two equations gives (α + β)λ = 1, so λ = 1/(α + β) and hence

r =
c

α + β
=
αa + βb

α + β
.

Approach 2: Showing that the given point lies on both lines

The equation of line OC is r1 = λc, and

r =
αa + βb

α + β
=

1

α + β
c

is of the required form, so R lies on OC.



The equation of the line AB can be written as r2−a = µ
−→
AB, so we want r−a = µ(b−a).

Now we have

r− a =
αa + βb

α + β
− α + β

α + β
a

=
−βa + βb

α + β

=
β

α + β
(b− a),

which is of the form µ(b− a), so R lies on both lines.

The lines OB and PR intersect at the point S. Prove that
OQ

BQ
=
OS

BS
.

S lies on both OB and PR, so we need to find its position vector, s. Once again, we
require s = λb = (1− µ)p + µr, so we substitute for p and r and compare coefficients:

s = λb = (1− µ)p + µr

= (1− µ)
αa

1− β + µ
αa + βb

α + β

=
(1− µ)α(α + β)a + µ(1− β)(αa + βb)

(1− β)(α + β)

=
((1− µ)α(α + β) + µα(1− β))a + µ(1− β)βb

(1− β)(α + β)

=
α(α + β − µα− 2µβ + µ)a + µ(1− β)βb

(1− β)(α + β)

Since the coefficient of a in this expression must be zero, we deduce that

µ =
α + β

α + 2β − 1
,

so that

s =
µ(1− β)β

(1− β)(α + β)
b

=
α + β

α + 2β − 1

β

(α + β)
b

=
β

α + 2β − 1
b

Now, since
−→
OQ and

−−→
BQ are both multiples of the vector q, we can compare the lengths OQ

and BQ in terms of their multiples of q. This might come out to be negative, depending
on the relative directions, but at the end, we can just consider the magnitudes.



We thus have, since q =
βb

1− α ,

OQ

BQ
=
( β

1− α
) / ( β

1− α − 1
)

=
( β

1− α
) / (β − 1 + α

1− α
)

=
β

β − 1 + α
,

while

OS

BS
=
( β

α + 2β − 1

) / ( β

α + 2β − 1
− 1
)

=
( β

α + 2β − 1

) / (−α− β + 1

α + 2β − 1

)
=

β

−α− β + 1
.

Thus these two ratios of lengths are equal, as the magnitude of both of these is

β

1− (α + β)
.



Question 8

(i) Suppose that a, b and c are integers that satisfy the equation

a3 + 3b3 = 9c3.

Explain why a must be divisible by 3, and show further that both b and c must
also be divisible by 3. Hence show that the only integer solution is a = b = c = 0.

We have a3 = 9c3 − 3b3 = 3(3c3 − b3), so a3 is a multiple of 3. But as 3 is prime, a itself
must be divisible by 3. (Why is this? If 3 divides a product rs, then 3 must divide either
r or s, as 3 is prime. Therefore since a3 = a.a.a, and 3 divides a3, it follows that 3 must
divide one of the factors, that is, 3 must divide a.)

Now we can write a = 3d, where d is an integer. Therefore we have

(3d)3 + 3b3 = 9c3,

which, on dividing by 3, gives
9d3 + b3 = 3c3.

By the same argument, as b3 = 3(c3−3d3), it follows that b3, and hence also b, is divisible
by 3.

We repeat the same trick, writing b = 3e, where e is an integer, so that

9d3 + (3e)3 = 3c3.

We again divide by 3 to get
3d3 + 9e3 = c3,

so that c3, and hence also c, is divisible by 3.

We then write c = 3f , where f is an integer, giving

3d3 + 9e3 = (3f)3.

Finally, we divide this equation by 3 to get

d3 + 3e3 = 9f 3.

Note that this is the same equation that we started with, so if a, b, c are integers which
satisfy the equation, then so are d = a/3, e = b/3 and f = c/3. We can repeat this process
indefinitely, so that a/3n, b/3n and c/3n are also integers which satisfy the equation. But
if a/3n is an integer for all n > 0, we must have a = 0, and similarly for b and c.

Therefore the only integer solution is a = b = c = 0.

[In fact, we can say even more. If a, b and c are all rational, say a = d/r, b = e/s, c = f/t
(where d, e, f are integers and r, s, t are non-zero integers), then we have(d

r

)3

+ 3
(e
s

)3

= 9
(f
t

)3

.



Now multiplying both sides by (rst)3 gives

(dst)3 + 3(ert)3 = 9(frs)3,

with dst, ert and frs all integers, and so they must all be zero, and hence d = e = f = 0.

Therefore, the only rational solution is also a = b = c = 0.]

(ii) Suppose that p, q and r are integers that satisfy the equation

p4 + 2q4 = 5r4.

By considering the possible final digit of each term, or otherwise, show that p and q
are divisible by 5. Hence show that the only integer solution is p = q = r = 0.

We consider the final digit of fourth powers:

a a4 2a4

0 0 0
1 1 2
2 6 2
3 1 2
4 6 2
5 5 0
6 6 2
7 1 2
8 6 2
9 1 2

So the last digits of fourth powers are all either 0, 5, 1 or 6, and of twice fourth powers
are all either 0 or 2.

Also, 5r4 is a multiple of 5, so it must end in a 0 or a 5.

Therefore if 2q4 ends in 0 (that is, when q is a multiple of 5), the possibilities for the final
digit of p4 + 2q4 are

(0 or 1 or 5 or 6) + 0 = 0 or 1 or 5 or 6,

so it can equal 5r4 (which ends in 0 or 5) only if p4 ends in 0 or 5, which is exactly when
p is a multiple of 5.

Similarly, if 2q4 ends in 2 (so q is not a multiple of 5), the possibilities for the final digit
of p4 + 2q4 are

(0 or 1 or 5 or 6) + 2 = 2 or 3 or 7 or 8,

so it can not be equal to 5r4 (which ends in 0 or 5).

Therefore, if p4 + 2q4 = 5r4, we must have p and q both being multiples of 5.

Now as in part (i), we write p = 5a and q = 5b, where a and b are both integers, to get

(5a)4 + 2(5b)4 = 5r4.



Dividing both sides by 5 gives
53a4 + 2.53b4 = r4,

where we are using dot to mean multiplication, so as before, r4 must be a multiple of 5
as the left hand side is 5(52a4 + 2.52b4). Thus, since 5 is prime, r itself must be divisible
by 5. Then writing r = 5c gives

53a4 + 2.53b4 = (5c)4,

which yields
a4 + 2b4 = 5c4

on dividing by 53.

So once again, if p, q, r give an integer solution to the equation, so do a = p/5, b = q/5
and c = r/5. Repeating this, so are p/5n, q/5n, r/5n, and as before, this shows that the
only integer solution is p = q = r = 0.

[Again, the same argument as before shows that this is also the only rational solution.]

This is an example of the use of Fermat’s Method of Descent, which he used to prove one
special case of his famous Last Theorem: he showed that x4 + y4 = z4 has no positive
integer solutions. In fact, he proved an even stronger result, namely that x4 + y4 = z2

has no positive integer solutions.

Another approach to solving the first step of part (ii) of this problem is to use modular
arithmetic, where we only consider remainders when dividing by a certain fixed number.
In this case, we would consider arithmetic modulo 5, so the only numbers to consider are
0, 1, 2, 3 and 4, and we want to solve p4 + 2q4 ≡ 0 (mod 5), where ≡ means “leaves the
same remainder”. Now a quick calculation shows that p4 ≡ 1 unless p ≡ 0, while 2q4 ≡ 2
unless q ≡ 0, so that

p4 + 2q4 ≡ (0 or 1) + (0 or 2) ≡ 0, 1, 2 or 3 (mod 5)

with p4 + 2q4 ≡ 0 if and only if p ≡ q ≡ 0.

Incidentally, Fermat has another theorem relevant to this problem, which turns out to
be relatively easy to prove (Fermat himself claimed to have done so), and is known as
Fermat’s Little Theorem. This states that, if p is prime, then ap−1 ≡ 1 (mod p) unless
a ≡ 0 (mod p). In our case, p = 5 gives a4 ≡ 1 (mod 5) unless a ≡ 0 (mod 5), as we
wanted.



Question 9

2a 2b

α

The diagram shows a uniform rectangular lamina with sides of lengths 2a and 2b leaning
against a rough vertical wall, with one corner resting on a rough horizontal plane. The
plane of the lamina is vertical and perpendicular to the wall, and one edge makes an
angle of α with the horizontal plane. Show that the centre of mass of the lamina is a
distance a cosα + b sinα from the wall.

We start by redrawing the sketch, labelling the corners and indicating the centre of mass
as G, as well as showing various useful lengths.

A

B

C

D

2a 2b

α

G
a

b

It is now clear that the distance of G from the wall is a cosα (horizontal distance from
wall to midpoint of AB) plus b sinα (horizontal distance from midpoint of AB to G), so
a total of a cosα + b sinα.

Also, in case it is useful later, we note that the vertical distance above the horizontal
plane is, by a similar argument from the same sketch, a sinα + b cosα.

The coefficients of friction at the two points of contact are each µ and the friction is
limiting at both contacts. Show that

a cos(2λ+ α) = b sinα,

where tanλ = µ.

There are two approaches to this. One is to indicate the reaction and friction forces
separately, while the other is to use the Three Forces Theorem. We show both of these.



Approach 1: All forces separately

We start by sketching the lamina again, this time showing the forces on the lamina,
separating the normal reactions from the frictional forces.

A

B

C

D

α

GR1

F1

R2

F2

W

We now resolve and take moments:

R(↑) F1 +R2 −W = 0
R(→) R1 − F2 = 0

M (
y
A) W (a cosα + b sinα)−R2.2a cosα + F2.2a sinα = 0

Since friction is limiting at both points of contact, we have F1 = µR1 and F2 = µR2.
Substituting these gives:

R(↑) µR1 +R2 −W = 0 (1)
R(→) R1 − µR2 = 0 (2)

M (
y
A) W (a cosα + b sinα)− 2aR2 cosα + 2aµR2 sinα = 0 (3)

Equation (2) gives R1 = µR2, so we can substitute this into (1) to get W = (1 + µ2)R2.
Substituting this into (3) now leads to

(1 + µ2)R2(a cosα + b sinα) = 2aR2(cosα− µ sinα).

We can clearly divide both sides by R2, and we are given that tanλ = µ, so we substitute
this in as well, to get

(1 + tan2 λ)(a cosα + b sinα) = 2a(cosα− tanλ sinα).

We spot 1 + tan2 λ = sec2 λ, and so multiply the whole equation through by cos2 λ, as the
form we are looking for does not involve secλ:

a cosα + b sinα = 2a(cos2 λ cosα− sinλ cosλ sinα).

Since the form we are going for is b sinα = a cos(2λ + α), we make use of double angle
formulæ, after rearranging:

b sinα = a(2 cos2 λ cosα− 2 sinλ cosλ sinα)− a cosα

= a((2 cos2 λ− 1) cosα− 2 sinλ cosλ sinα)

= a(cos 2λ cosα− sin 2λ sinα)

= a cos(2λ+ α),



and we are done with this part.

Approach 2: Three Forces Theorem

The ‘Three Forces Theorem’ states that if three (non-zero) forces act on a large body in
equilibrium, and they are not all parallel, then they must pass through a single point.
(Why is this true? Let’s say two of the forces pass through point X. Taking moments
about X, the total moment must be zero, so the moment of the third force about X must
be zero. Therefore, the force itself is either zero or it passes through X. Since the forces
are non-zero, the third force must pass through X.)

In our case, we have a normal reaction and a friction force at each point of contact. We
can combine these into a single reaction force as shown in the sketch. Here we have
written N for the normal force, F for the friction and R for the resultant, which is at an
angle of θ to the normal.

N

F
R

θ

We see from this sketch that tan θ = F/N = µN/N = µ. In our case, since tanλ = µ we
must have θ = λ.

We can now redraw our original diagram with the three (combined) forces shown:

A

B

C

D

O

2a
α

G

R1

R2

W

X

P

λ

λ

We can now use the Three Forces Theorem is as follows. Looking at the diagram, we
know that the distance OB = 2a cosα = OP +PB. Now we know OP = a cosα+ b sinα,
so we need only calculate PB.

But PB = PX tanλ (using the triangle PBX), and

PX = OA+ height of X above A

= 2a sinα + (a cosα + b sinα) tanλ.



Putting these together gives

OB = 2a cosα = OP + PB

= a cosα + b sinα + (2a sinα + (a cosα + b sinα) tanλ) tanλ

= a cosα(1 + tan2 λ) + b sinα(1 + tan2 λ) + 2a sinα tanλ

= a cosα sec2 λ+ b sinα sec2 λ+ 2a sinα tanλ.

We can now rearrange to get

b sinα sec2 λ = 2a cosα− a cosα sec2 λ− 2a sinα tanλ.

Since we want an expression for b sinα, we now multiply by cos2 λ to get

b sinα = 2a cosα cos2 λ− a cosα− 2a sinα sinλ cosλ

= a((2 cos2 λ− 1) cosα− (2 sinλ cosλ) sinα)

= a(cos 2λ cosα− sin 2λ sinα)

= a cos(2λ+ α).

An alternative argument using the Three Forces Theorem proceeds by considering the
distance XP . Using the left half of the diagram, we have

XP = OA+OP tanλ

= 2a sinα + (a cosα + b sinα) tanλ.

From the right half of the diagram, we also have XP = PB/ tanλ, and PB = 2a cosα−
OP = a cosα− b sinα, so that

2a sinα + (a cosα + b sinα) tanλ = (a cosα− b sinα)/ tanλ.

Now multiplying by tanλ and collecting like terms gives

b sinα(1 + tan2 λ) = a cosα(1− tan2 λ)− 2a sinα tanλ.

Then using 1 + tan2 λ = sec2 λ and then multiplying by cos2 λ gives us

b sinα = a cosα(cos2 λ− sin2 λ)− 2a sinα sinλ cosλ

= a cosα cos 2λ− a sinα sin 2λ

= a cos(α + 2λ),

as we wanted.

Show also that if the lamina is square, then λ = π
4
− α.

We have a = b as the lamina is square, so that our previous equation becomes

a sinα = a cos(2λ+ α).



Dividing by a gives
sinα = cos(2λ+ α).

Now we can use the identity sinα = cos(π
2
− α), so that

π

2
− α = 2λ+ α.

(Being very careful, we should check that we can take inverse cosines of both sides to
deduce this equality. This will be the case if both 0 < π

2
− α < π

2
and 0 < 2λ + α < π

2
.

But 0 < α < π
2

so the first inequality is clearly true. For the second inequality, we have
0 < λ < π

2
so that 0 < 2λ+ α < 3π

2
. But since the cosine of this is positive (being sinα),

it must lie in the range 0 < 2λ+ α < π
2

as required.)

Subtracting α and dividing by 2 now gives our desired result:

π

4
− α = λ.



Question 10

A particle P moves so that, at time t, its displacement r from a fixed origin is given by

r =
(
et cos t

)
i +
(
et sin t

)
j.

Show that the velocity of the particle always makes an angle of π
4

with the particle’s
displacement, and that the acceleration of the particle is always perpendicular to its
displacement.

To find the velocity, v, and acceleration, a, we differentiate with respect to t (using the
product rule).

We have

r =
(
et cos t

)
i +
(
et sin t

)
j

v = dr/dt =
(
et cos t− et sin t

)
i +
(
et sin t+ et cos t

)
j

a = dv/dt =
(
(et cos t− et sin t

)
− (et sin t+ et cos t))i+(

(et sin t+ et cos t) + (et cos t− et sin t
)
j

= (−2et sin t)i + (2et cos t)j.

We can rewrite these, if we wish, by taking out the common factors:

r = et
(
(cos t)i + (sin t)j

)
v = et

(
(cos t− sin t)i + (sin t+ cos t)j

)
a = 2et

(
(− sin t)i + (cos t)j)

)
.

From these, we can easily find the magnitudes of the displacement, velocity and acceler-
ation:

|r| = et
√

(cos t)2 + (sin t)2 = et

|v| = et
√

(cos t− sin t)2 + (sin t+ cos t)2

= et
√

2 cos2 t+ 2 sin2 t

= et
√

2

|a| = 2et
√

(− sin t)2 + (cos t)2 = 2et.

We can now find the angles between these using a.b = 2|a||b| cos θ; firstly, for displace-
ment and velocity we have

r.v = e2t
(
cos t(cos t− sin t) + sin t(sin t+ cos t)

)
= e2t(cos2 t+ sin2 t)

= e2t, while

r.v = et.et
√

2 cos θ,



so that cos θ = 1/
√

2, so that θ = π
4

as required.

Next, for displacement and acceleration we have

r.a = 2e2t
(
cos t(− sin t) + sin t cos t

)
= 0,

so they are perpendicular.

Geometric-trigonometric approach

There is another way to find the angles involved which does not use the scalar (dot)
product.

Recall that the velocity is v = et
(
(cos t − sin t)i + (sin t + cos t)j

)
. We can use the

“R cos(θ + α)” technique, thinking of cos t− sin t as 1 cos t− 1 sin t, so that

cos t− sin t =
√

2
(

1√
2

cos t− 1√
2

sin t
)

=
√

2(cos t cos π
4
− sin t sin π

4
)

=
√

2 cos(t+ π
4
)

sin t+ cos t =
√

2
(

1√
2

sin t+ 1√
2

cos t
)

=
√

2(sin t cos π
4

+ cos t sin π
4
)

=
√

2 sin(t+ π
4
)

Thus v =
√

2et
(
cos(t+ π

4
)i + sin(t+ π

4
)j
)
, so v is at an angle of π

4
with r.

Likewise, a makes an angle of π
4

with v, and so an angle of π
2

with r.

Sketch the path of the particle for 0 6 t 6 π.

One way of thinking about the path of the particle is that its displacement at time t is
given by r = et

(
(cos t)i + (sin t)j

)
, so that it is at distance et from the origin and at an

angle of t (in radians) to the x-axis (as
(
(cos t)i+(sin t)j

)
is a unit vector in this direction).

Thus its distance at time t = 0 is e0 = 1, and when it has gone a half circle, its distance
is eπ, which is approximately e3 ≈ 20. So the particle moves away from the origin very
quickly!

Another thing to bear in mind is that its velocity is always at an angle of π
4

to its
displacement. Since it is moving away from the origin, its velocity is directed away from
the origin, so initially it is moving at an angle of π

4
above the positive x-axis.

As we sketch the path, we also indicate the directions of the velocities at the times t = 0,
t = π

2
and t = π.

y

x1

eπ/2

−eπ



A second particle Q moves on the same path, passing through each point on the path
a fixed time T after P does. Show that the distance between P and Q is proportional
to et.

We write rP = r for the position vector of P and rQ for the position vector of Q. We
therefore have

rP =
(
et cos t

)
i +
(
et sin t

)
j

rQ =
(
et−T cos(t− T )

)
i +
(
et−T sin(t− T )

)
j,

and so we can calculate |rP − rQ|2:

|rP − rQ|2 =
(
et cos t− et−T cos(t− T )

)2
+
(
et sin t− et−T sin(t− T )

)2

=
(
e2t cos2 t− 2etet−T cos t cos(t− T ) + 2e2(t−T ) cos2(t− T )

)
+(

e2t sin2 t− 2etet−T sin t sin(t− T ) + e2(t−T ) sin2(t− T )
)

= e2t − 2e2t−T ((cos t cos(t− T ) + sin t sin(t− T )
)

+ e2(t−T )

= e2t − 2e2t−T cos(t− (t− T )) + e2t−2T

= e2t
(
1− 2e−T cosT + e−2T

)
,

so that
|rP − rQ| = et

√
1− 2e−T cosT + e−2T ,

which is clearly proportional to et, as required, since T is a constant.



Question 11

Two particles of masses m and M , with M > m, lie in a smooth circular groove
on a horizontal plane. The coefficient of restitution between the particles is e. The
particles are initially projected round the groove with the same speed u but in opposite
directions. Find the speeds of the particles after they collide for the first time and show
that they will both change direction if 2em > M −m.

This begins as a standard collision of particles question. ALWAYS draw a diagram
for collisions questions; you will do yourself (and the examiner) no favours if you try to
keep all of the directions in your head, and you are very likely to make a mistake. My
recommendation is to always have all of the velocity arrows pointing in the same direction.
In this way, there is no possibility of messing up the Law of Restitution; it always reads

v1 − v2 = e(u2 − u1) or
v1 − v2

u2 − u1

= e, and you only have to be careful with the signs of

the given velocities; the algebra will then keep track of the directions of the unknown
velocities for you.

Before

After

M
u1 = u

m
u2 = −u

M
v1 m

v2

Then Conservation of Momentum gives

Mu1 +mu2 = Mv1 +mv2

and Newton’s Law of Restitution gives

v2 − v1 = e(u1 − u2).

Substituting u1 = u and u2 = −u gives

Mv1 +mv2 = (M −m)u (1)

v2 − v1 = 2eu. (2)

Then solving these equations (by (1)−m× (2) and (1) +M × (2)) gives

v1 =
(M −m− 2em)u

M +m
(3)

v2 =
(M −m+ 2eM)u

M +m
. (4)

The speeds are then (technically) the absolute values of these, but we will stick with these
formulæ as they are what are needed later.



Now, the particles both change directions if v1 and v2 have the opposite signs from u1

and u2, respectively, so v1 < 0 and v2 > 0. Thus we need

M −m− 2em < 0 and (5)

M −m+ 2eM > 0. (6)

But (6) is always true, as M > m, so we only need M −m < 2em from (5).

After a further 2n collisions, the speed of the particle of mass m is v and the speed of
the particle of mass M is V . Given that at each collision both particles change their
directions of motion, explain why

mv −MV = u(M −m),

and find v and V in terms of m, M , e, u and n.

The fact that the particles both change their directions of motion at each collision means
that if they have velocities v1 and v2 after some collision, they will have velocities −v1 and
−v2 before the next collision. This is because they are moving around a circular track,
and therefore next meet on the opposite site, and hence are each moving in the opposite
direction from the one they were moving in. (We do not concern ourselves with precisely
where on the track they meet, and we are thinking of our velocities as one-dimensional
directed speeds.)

Therefore, mvm +MvM is constant in value after each collision, where vm is the velocity
of the particle of mass m, and vM that of the particle of mass M , but it reverses in
sign before the next collision. So after the first collision, it it Mu −mu to the right (in
our above sketch), and hence after an even number of further collisions, it will still be
MvM + mvm = Mu − mu to the right. But after an even number of further collisions,
the particle of mass M is moving to the left, so vM = −V , vm = v. Thus

mv −MV = (M −m)u.

Also, since there are a total of 2n+1 collisions, we have, by 2n+1 applications of Newton’s
Law of Restitution,

V + v = e2n+1(u+ u).

Solving these two equations simultaneously as before then yields

V =
(2me2n+1 −M +m)u

M +m

v =
(2Me2n+1 +M −m)u

M +m
.



Question 12

A discrete random variable X takes only positive integer values. Define E(X) for this
case, and show that

E(X) =
∞∑
n=1

P (X > n).

For the definition of E(X), we simply plug the allowable values of X into the definition
of E(X) for discrete random variables, to get

E(X) =
∞∑
n=1

nP(X = n).

Now, we can think of n,P(X = n) as the sum of n copies of P(X = n), so that we get

E(X) =
∞∑
n=1

nP(X = n)

= 1.P(X = 1) + 2.P(X = 2) + 3.P(X = 3) + 4.P(X = 4) + · · ·
= P(X = 1) +

P(X = 2) + P(X = 2) +

P(X = 3) + P(X = 3) + P(X = 3) +

P(X = 4) + P(X = 4) + P(X = 4) + P(X = 4) + · · ·

Adding each column now gives us something interesting: the first column is P(X =
1) + P(X = 2) + P(X = 3) + · · · = P(X > 1), the second column is P(X = 2) + P(X =
3) + · · · = P(X > 2), the third column is P(X = 3) + P(X = 4) + · · · = P(X > 3), and
so on. So we get

E(X) = P(X > 1) + P(X > 2) + P(X > 3) + P(X > 4) + · · ·

=
∞∑
n=1

P(X > n),

as we wanted.

An alternative, more formal, way of writing this proof is as follows, using what is some-
times called “summation algebra”:



E(X) =
∞∑
n=1

nP (X = n)

=
∞∑
n=1

n∑
m=1

P(X = n) summing n copies of a constant

=
∑

16m6n<∞
P(X = n) writing it as one big sum

=
∞∑
m=1

∞∑
n=m

P(X = n) see below

=
∞∑
m=1

P(X > m),

which is the sum we wanted. For the penultimate step, note the we are originally summing
all pairs of values (m,n) where n is any positive integer and m lies between 1 and n, so
we have 1 6 m 6 n < ∞, as written on the third line. This can also be thought of as
summing over all pairs of values (m,n) where m is any positive integer (i.e., 1 6 m <∞),
and n is chosen so that m 6 n <∞, that is, we are summing on n from m to ∞.

[One final technical note: we are allowed to reorder the terms of this infinite sum because
all of the summands (the things we are adding) are non-negative. If some were positive
and others were negative, we might get all sorts of weird things happening if we reordered
the terms. An undergraduate course in Analysis will usually explore such questions.]

I am collecting toy penguins from cereal boxes. Each box contains either one daddy
penguin or one mummy penguin. The probability that a given box contains a daddy
penguin is p and the probability that a given box contains a mummy penguin is q,
where p 6= 0, q 6= 0 and p+ q = 1.

Let X be the number of boxes that I need to open to get at least one of each kind of
penguin. Show that P(X > 4) = p3 + q3, and that

E(X) =
1

pq
− 1.

We ask ourselves: what needs to happen to have X > 4? This means that we need to
open at least 4 boxes to get both a daddy and a mummy penguin. In other words, we
can’t have had both a daddy and a mummy among the first three boxes, so they must
have all had daddies or all had mummies. Therefore P(X > 4) = p3 + q3.

This immediately generalises to give P(X > n) = pn−1 + qn−1, at least for n > 3. For
n = 1, P(X > 1) = 1, and for n = 2, P(X > 2) = 1 = p1 + q1, as we argued above.



Therefore, we have

E(X) =
∞∑
n=1

P(X > n)

= 1 + (p1 + q1) + (p2 + q2) + (p3 + q3) + · · ·
= (1 + p+ p2 + p3 + · · · ) + (1 + q + q2 + q3 + · · · )− 1

=
1

1− p +
1

1− q − 1 adding the geometric series

=
1

q
+

1

p
− 1 as p+ q = 1

=
p+ q

qp
− 1

=
1

pq
− 1 again using p+ q = 1.

Hence show that E(X) > 3.

To show that E(X) > 3, we simply need to show that 1
pq

> 4. But this is the same as

showing that pq 6 1
4
, by taking reciprocals.

Now, recall that q = 1− p, so we need to show that p(1− p) 6 1
4
. To do this, we rewrite

the quadratic in p by completing the square:

p(1− p) = p− p2 = 1
4
− (p− 1

2
)2.

Since (p− 1
2
)2 > 0 for all p (even outside the range 0 < p < 1), we have p(1− p) 6 1

4
, as

required, with equality only when p = q = 1
2
.

This can also be proved using calculus, or using the AM–GM inequality, or by writing
1/pq = (p+ q)2/pq and then rearranging to get (p− q)2 > 0.



Question 13

The number of texts that George receives on his mobile phone can be modelled by
a Poisson random variable with mean λ texts per hour. Given that the probability
George waits between 1 and 2 hours in the morning before he receives his first text is p,
show that

pe2λ − eλ + 1 = 0.

Given that 4p < 1, show that there are two positive values of λ that satisfy this
equation.

Let X be the number of texts George receives in the first hour of the morning and Y be
the number he receives in the second hour.

Then X ∼ Po(λ) and Y ∼ Po(λ), with X and Y independent random variables.

We thus have

P(George waits between 1 and 2 hours for first text) = P(X = 0 and Y > 0)

= P(X = 0).P(Y > 0)

= e−λ.(1− e−λ)

= p,

so that e−λ − e−2λ = p.

Multiplying this last equation by e2λ gives eλ−1 = pe2λ; a straightforward rearrangement
yields our desired equation.

(This equation can also be deduced by considering the waiting time until the first text;
this is generally not studied until university, though.)

The solutions of the quadratic equation in eλ are given by

eλ =
1±√1− 4p

2p
.

But we are given that 4p < 1, so that 1 − 4p > 0 and there are real solutions. We need
to show, though, that the two values of eλ that we get are both greater than 1, so that
the resulting values of λ itself are both greater than 0.

We have

1±√1− 4p

2p
> 1 ⇐⇒ 1±

√
1− 4p > 2p

⇐⇒ ±
√

1− 4p > 2p− 1.

Now, since 4p < 1, we have 2p < 1
2
, so 2p − 1 < 0, from which it follows that for the

positive sign in the inequality,
√

1− 4p > 0 > 2p − 1. It therefore only remains to show
that −√1− 4p > 2p− 1. But

−
√

1− 4p > 2p− 1 ⇐⇒
√

1− 4p < −(2p− 1)

⇐⇒ 1− 4p < (2p− 1)2

⇐⇒ 1− 4p < 4p2 − 4p+ 1,



which is clearly true as 4p2 > 0. (We were allowed to square between the first and second
lines as both sides are positive.)

Thus the two solutions to our quadratic in eλ are both greater than 1, so there are two
positive values of λ which satisfy the equation.

The number of texts that Mildred receives on each of her two mobile phones can be
modelled by independent Poisson random variables but with different means λ1 and λ2

texts per hour. Given that, for each phone, the probability that Mildred waits between
1 and 2 hours in the morning before she receives her first text is also p, find an expression
for λ1 + λ2 in terms of p.

Each phone behaves in the same way as George’s phone above, so the two possible values
of λ are those found above. That is, the values of eλ1 and eλ2 are the two roots of
pe2λ − eλ + 1 = 0.

We know that the product of the roots of the equation ax2 + bx+ c = 0 is c/a,1 so in our
case, eλ1eλ2 = 1/p, so that eλ1+λ2 = 1/p, giving

λ1 + λ2 = ln(1/p) = − ln p.

Find the probability, in terms of p, that she waits between 1 and 2 hours in the morning
to receive her first text.

Let X1 be the number of texts she receives on the first phone during the first hour and
Y1 be the number of texts that she receives on the first phone during the second hour.
Then X1 and Y1 are both distributed as Po(λ1), so

P(X1 = 0) = e−λ1

P(Y1 = 0) = e−λ1 .

Now let X2 and Y2 be the corresponding random variables for the second phone, so we
have

P(X2 = 0) = e−λ2

P(Y2 = 0) = e−λ2 .

We must now consider the possible situations in which she receives her first text between
1 and 2 hours in the morning. She must receive no texts on either phone in the first hour,
and at least one text on one of the phones in the second hour. We use the above result
that λ1 + λ2 = − ln p, so that e−λ1−λ2 = p.

1Why is this? If the roots of ax2 + bx + c = 0 are α and β, then we can write the quadratic as
a(x−α)(x− β) = a(x2− (α+ β)x+αβ), so that c = aαβ, or αβ = c/a. Likewise, b = −a(α+ β) so that
α+ β = −b/a.



Thus

P(first text between 1 and 2 hours)

= P(X1 = 0 and X2 = 0 and Y1 > 0 or Y2 > 0 or both)

= P(X1 = 0).P(X2 = 0).
(
1− P(Y1 = 0 and Y2 = 0)

)
= P(X1 = 0).P(X2 = 0).

(
1− P(Y1 = 0).P(Y2 = 0)

)
= e−λ1 .e−λ2 .

(
1− e−λ1 .e−λ2

)
= e−λ1−λ2 .(1− e−λ1−λ2)

= p(1− p),

and we are done.

Alternative approach

This approach uses a result which you may not have come across yet: the sum X + Y of
two independent Poisson random variables X ∼ Po(λ) and Y ∼ Po(µ) is itself a Poisson
variable with X + Y ∼ Po(λ+ µ).

Since the number of texts received on the two phones together is the sum of the number
of texts received on each one, the total can be modelled by a Poisson random variable
with mean Λ = λ1 + λ2 texts per hour.

Then the probability of waiting between 1 and 2 hours in the morning for the first text is
given by q, where

qe2Λ − eΛ + 1 = 0,

using the result from the very beginning of the question, replacing p with q and λ with Λ.
Since Λ = λ1 + λ2 = ln(1/p) from above, eΛ = 1/p.

Therefore

q =
eΛ − 1

e2Λ

=
1/p− 1

(1/p)2

= p2(1/p− 1)

= p(1− p).



Hints & Solutions for STEP II 2010 
               
 
1   When two curves meet they share common coordinates; when they “touch” they also share a 

 common gradient. In the case of the osculating circle, they also have a common curvature at the 

point of contact. Since curvature (a further maths topic) is a function of both 
x

y

d

d
 and 

2

2

d

d

x

y
, the 

question merely states that C and its osculating circle at P have equal rates of change of gradient. 
It makes sense then to differentiate twice both the equation for C and that for a circle, with 
equation of the form  (x – a)2 + (y – b)2 = r2, and then equate them when  x = 4

1 . The three 

resulting equations in the three unknowns a, b and r then simply need to be solved simultaneously. 
 

 For y =  1 – x + tan x , 
x

y

d

d
 = – 1 + sec2x  and  

2

2

d

d

x

y
 = 2 sec2x tan x .  

 For  (x – a)2 + (y – b)2 = r2 ,  2(x – a) + 2(y – b) 
x

y

d

d
 = 0   and   2 + 2(y – b) 

2

2

d

d

x

y
 + 2

2

d

d








x

y
= 0 .  

 When  x = 4
1 ,  y = 4

12    and so      22

4
12

4
1 2 rba   ; 

 

  
x

y

d

d
 = 1

)(

)(






by

ax
  then gives a relationship between a and b; 

 

      and 
2

2

d

d

x

y
 = 4 = 

)(2

4

by 
   gives the value of b. 

 Working back then gives a and r.  
 
 Answers: The osculating circle to C at P has centre   4

1
2
5

2
1

4
1   ,   and radius 

2
1 . 

               
 
2   The single-maths approach to the very first part is to use the standard trig. “Addition” formulae for 

sine and cosine, and then to use these results, twice, in (i); firstly, to rewrite  sin3x  in terms of 
sin3x  so that direct integration can be undertaken; then to express  cos3x  in terms of  cos3x in 
order to get the required “polynomial” in cosx. Using the given “misunderstanding” in (ii) then 
leads to a second such polynomial which, when equated to the first, gives an equation for which a 
couple of roots have already been flagged. Unfortunately, the several versions of the question that 
were tried, in order to help candidates, ultimately led to the inadvertent disappearance of the 
interval 0 to  in which answers had originally been intended. This meant that there was a little bit 
more work to be done at the end than was initially planned. 

 
 cos3x = cos(2x + x) = cos2x cos x – sin2x sin x = (2c2 – 1)c – 2sc.s = (2c2 – 1)c – 2c(1 – c2) 
           = 4c3 – 3c . 
 

 sin3x = sin(2x + x) = sin2x cos x + cos2x sin x = 2sc.c + (1 – 2s2)s = 2s(1 – s2) + s(1 – 2s2) 
 

           = 3s – 4s3  

  

 (i)  I () =  dx =  dx =   


0

3sin8sin7 xx   


0

3sin2sin xx  
0

3coscos 3
2 xx     

                  = – cos   – 3
2 (4cos3  – 3 cos) + 1 + 3

2  = – 3
8 c3 + c + 3

5   

       and  I () = 0  when  c = 1  ( = 0)  



 (ii) J () = 
0

4
4
82

2
7 sinsin xx    = 2

7 (1 – cos2 ) – 2(1 – cos2)2 = – 2c4 + 2
1 c2 + 2

3    

       I () = J ()    0 = 12c4 – 16c3 – 3c2 + 6c + 1 = (c – 1)2 (2c + 1)(6c + 1)    
 

       Thus cos  = 1,   = 0;  cos  = – 2
1 ,   = 3

2 ; and cos  = – 6
1 ,   =  – cos – 1 ( 6

1 ).  

  
       Answers: 6

11
3
2 cos)12(  ,2  ,2   nnn  

               
 
3  You don’t have to have too wide an experience of mathematics to be able to recognise the 

 Fibonacci Numbers in a modest disguise here. (However, this is of little help here, as you should 
 be looking to follow the guidance of the question.) In (i), you are clearly intended to begin by 
substituting n = 0, 1, 2 and 3, in turn, into the given formula for Fn, using the four given terms of 
the sequence. You now have four equations in four unknowns, and the given result in (i) is 
intended to help you make progress; with (ii) having you check the formula in a further case. In 
the final part, you should split the summation into two parts, each of which is an infinite geometric 
progression. 

 
 (i) F0 = 0    0 = a + b  or  b = – a . Then F1 = 1    1 = a( – ).   
      [F2 = 1    1 = a(2 – 2)     +  = 1 is needed later] 
 

      and  F3 = 2    2 = a(3 – 3) = a( – ) (2 +  + 2)  by the difference of two cubes 
 

                        = 1.(2 +  + 2)    2 +  + 2 = 2 

      Then, using any two suitable eqns., e.g. any two of   = – 1,   –  = 
a

1
  and   +  = 1, and 

     solving simultaneously gives a = 
5

1
,  b = – 

5

1
,  =  51

2

1
  ,   =  51

2

1
 .       

 

 (ii) Using the formula   Fn = a n + b  n =  nn

n
)51()51(

52

1
   with  n = 6 ; the Binomial 

       Theorem gives   3226
555.65.1555.205.1556151  = 576 + 256 5 . 

       Similarly,   525657651
6

   so that  F6 =  5512
52

1
6

 = 8. 

 

 (iii) 





0  
1  2

 
n

n
nF

 = 






















0  0  2
 

22
 

2 n

n

n

n
aa 

=    





















 511

1

52

1

511

1

52

1

4
1

4
1

  using the     

        S formula for the two GPs; 

             = 

















 53

4

52

1

53

4

52

1
.  

        Rationalising denominators then yields  























59

53

5

2

59

53

5

2
 = 









4

52

5

2
 = 1. 

               
 
 
 
 
 



               
 
4 Hopefully, the obvious choice is y = a – x  for the initial substitution and, as with any given 

 result, you should make every effort to be clear in your working to establish it. Thereafter, the two 
 integrals that follow in (i) use this result with differing functions and for different choices of the 
 upper limit a. Since this may be thought an obvious way to proceed, it is (again) important that 
 your working is clear in identifying the roles of f(x) and f(a – x) in each case. In part (ii), however, 
it is not the first result that is to be used, but rather the process that yielded it. The required 
substitution should, again, be obvious, and then you should be trying to mimic the first process in 
this second situation. 

 
 (i) Using the substn.  y = a – x , dy = – dx  and  (0, a)  (a, 0)  so that 

       

a

xafxf

xf

0 )()(

)(
dx =  

0

)()(

)(

a yfyaf

yaf
.– dy  =  

a

yfyaf

yaf

0 )()(

)(
dy   

       =  
a

xafxf

xaf

0 )()(

)(
dx , since the x/y interchange here is nothing more than a re-labelling. 

      Then  2 I =  
a

xafxf

xafxf

0 )()(

)()(
dx  = dx =    = a    I = 

a

0

.1
0

ax 2
1 a.  

 
      For  f(x) = ln(1 + x) ,  ln(2 + x – x2) = ln[(1 + x)(2 – x)] = ln(1 + x) + ln(2 – x)    
 

      and  ln(2 – x) = ln(1 + [1 – x]) = f(a – x)  with  a = 1  so that   

1

0 )1()(

)(

xfxf

xf
dx = 2

1 . 

 

        

2/

0 4
1sin

sin

x

x
dx  =  

2/

0 2
1

2
1 .cos.sin

sin

xx

x
dx  =   

2/

0 2
1sinsin

sin
2


 xx

x
dx  = 24

1  . 

          

 (ii) For  u = 
x

1
 ,  du = 

2

1

x
 dx  and   2 ,2

1   2
1 ,2 . 

       Then     

2

5.0
1sinsin

sin
.

1

xx

x

x
dx  =    

2

5.0
12 sinsin

sin
.

1

xx

xx

x
dx  = 

 
   

5.0

2
1

11

sinsin

sin.

uu

uu .– du    

             = 
 

   

2

5.0
1

1

sinsin

sin
.

1

u

u

uu
du    or   

 
   

2

5.0
1

1

sinsin

sin
.

1

x

x

xx
dx  

       Adding then gives  2 I = 
2

5.0

1

x
dx =   = 2 ln 2    I = ln 2 . 

5.0

2ln x

               
 
5 The opener here is a standard bit of A-level maths using the scalar product, and the following 

 parts use this method, but with a bit of additional imagination needed. In 3-dimensions, there are 
 infinitely lines inclined at a given angle to another, specified line, and this is the key idea of the 
 final part of the question. Leading up to that, in (i), you need only realise that a line equally 
 inclined to two specified (non-skew) lines must lie in the plane that bisects them (and is 
 perpendicular to the plane that contains, in this case, the points O, A and B). One might argue that 
 the vector treatment of “planes” is further maths work, but these ideas are simple geometric ones. 

 



 cos2  = 
27.3

)1  ,1  ,5()1  ,1  ,1( 
 

3

1
    

 

 (i) l1 equally inclined to OA and OB iff  
27.

)1  ,1  ,5()  ,  ,(

3.

)1  ,1  ,1()  ,  ,(
222222 pnm

pnm

pnm

pnm









  

      i.e.  3(m + n + p) = 5m – n – p   or   m = 2(n + p). 
 

      For l1 to be the angle bisector, we also require (e.g.) 
3.222 pnm

pnm




 = cos  , where 

      cos2  = 2 cos2  – 1 = 3
1     cos  = 

3
2 , so that   m + n + p = 2.222 pnm  . 

 

      Squaring both sides:  m2 + n2 + p2 + 2mn + 2np + 2pm = 2(m2 + n2 + p2)  
 

                                            2mn + 2np + 2pm = m2 + n2 + p2  
      Setting  m = 2n + 2p  (or equivalent) then gives  2np + (2n + 2p)2 = (2n + 2p)2 + n2 + p2 

 

      which gives  (n – p)2 = 0    p = n ,  m = 4n .  

      Thus  , or any non-zero multiple will suffice. 

































1

1

4

p

n

m

 
 (ii) If you used the above method then you already have this relationship; namely,   

2uv + 2vw + 2wu = u2 + v2 + w2 . 

       Thus,  2xy + 2yz + 2zx = x2 + y2 + z2  gives all lines inclined at an angle  cos – 1
3
2  to OA  and 

       hence describes the surface which is a double-cone, vertex at O, having central axis OA .  
               
 
6 Although it seems that 3-dimensional problems are not popular, this is actually a very, very easy 

question indeed and requires little more than identifying an appropriate right-angled triangle and 
using some basic trig. and/or Pythagoras. There are thus so many ways in which one can approach 
the three parts to this question that it is difficult to put forward just the one.  

 

 O 

B 

D 

C 

P 
A 

 (i) Taking the midpoint of AB as the origin, O,  
      with the x-axis along AB and the y-axis along 
      OC, we have a cartesian coordinate system to 
      help us organise our thoughts. 
 
      Then  A =  0  ,0  ,2

1 ,  B =  0  ,0  ,2
1 ,   

      C =  0  ,  ,0 2
3   by trig. or Pythagoras, and  

      P =  0  ,  ,0 6
3 . The standard distance formula 

      then gives PA (or PB) = 3
3  and  PD = 3

6  or 3
2 . 

 

 (ii) The angle between adjacent faces is (e.g.)  DOC = cos – 1












3

3

2
1

6
1

   in right-angled triangle  

        DOP, which gives the required answer, cos – 1
3
1  . 

 
 



 (iii)    D     The centre, S, of the inscribed sphere must, by symmetry, 

     6
3

2
3    lie on PD, equidistant from each vertex.    

          r3
6        

   r  
 

      S           6
3  

 
                 r               x 
 

      P      6
3   A 

 
               

   By Pythagoras,  x2 = 12
1  +  2

3
6

9
6 2 xx      x = 4

6 . 

        Then  r = x sin(90o – (ii)) = x3
1 = 12

6 . 

 
   Alternatively, if you know that the sphere’s centre is at  
   The centre of mass of the tetrahedron, the point (S)  
   with position vector )(4

1 dcba  , then the answer  

   is just DP4
1  = 12

6 . 

 
7 The first two parts of the question begin, helpfully, by saying exactly what to consider in order to 

proceed, and the material should certainly appear to be routine enough to make these parts very 
accessible. Where things are going in (iii) may not immediately be obvious but, presumably, there 
is a purpose to (i) and (ii) which should become clear in (iii).  

 

 (i) y = x3 – 3qx – q(1 + q)    
x

y

d

d
 = 3(x2 – q) = 0  for  qx  .   

      When  x = q ,  y =  2
1 qq   < 0  since  q > 0    

      When x = q ,  y =  2
1 qq   < 0    since  q > 0  and  q  1 

 

      Since both TPs below x-axis, the curve crosses the x-axis once only (possibly with sketch)           
 

 (ii) x = u +
u

q
    x3 = 

3

32
3 33

u

q

u

q
uqu   

       0 = x3 – 3qx – q(1+ q) = 
3

32
3 33

u

q

u

q
uqu   – 3qu – 2

2

3 qq
u

q
   

         u3 + )1(
3

3

qq
u

q
  = 0   or       0)1( 3323  quqqu     

 

       u3 = 
2

4)1()1( 322 qqqqq 
 =  qqqq

q
4211 

2
2    

           =   211 
2

qq
q

  =  )1(1 
2

qq
q

  = q  or  q2 

       giving  u = 3
1

q   or  3
2

q   and   x =  3
1

q  + 3
2

q   
 

 (iii)  + = p ,   = q      )(3333   = p3 – 3qp . 
 

        One root is the square of the other     = 2  or   = 2     220   . 

        Then 0 =    23322 )(  )1(33 qqqpp   

           p = 3
1

q  + 3
2

q . 
               
 
 
 



               
8 When asked to draw sketches of graphs, it is important to note the key features. The first curve is a 

standard “exponential decay” curve; the second has the extra factor of sinx. Now sinx oscillates 
between –1 and 1, and introduces zeroes at intervals of . Thus, C2 oscillates between C1 and –C1, 
with zeroes every  units along the x-axis. This sketch of the two curves should then make it clear 
that the xi that are then introduced are the x-coordinates of C2’s maxima, when  sinx = 1. [It is 
important to be clear in your description of xn and xn+1 in terms of n as these are going to be 
substituted as limits into the area integrals that follow.] The integration required to find one 
representative area will involve the use of “parts”, and the final summation looks like it must be 
that of an infinite GP. 

  
  
 
 
 
         y = e – x 
 
                           
 
       y = – e – x   
         
         
          
         

– 1 

   1 

      O                                             2                       3                    4 

 The curves meet each time  sin x = 1  when  x = 2n  + 2
  ( n = 0, 1, 2, …).  

 Thus  xn = 
2

)34( n
  and  xn + 1 = 

2

)14( n
. 

 dx  attempted by parts  = x  or  x      xx sine      xx xx cos.ecos.e d     xx xx sin.esin.e  d

 (depending on your choice of ‘1st’ and ‘2nd’ part) =    












   xxxx xxx d sin.esin.ecos.e .

 Then  I  =  – I  (by “looping”) = )sin(cose xxx   )sin(cose2
1 xxx      

 An  = dx  =  


 
1

sinee
n

n

x

x

xx x   
n

n

x

x

xx xx
1

sincosee 2
1



   or     
n

n

x

x

x xx
1

2sincose2
1



    

       =    210e210e
)3  4(

2
1)1  4(

2
1 2

1
2
1

  nn 
 =   2)1  4(

2
1 e1e 2

1

 n
   

 
 

 Note that  A1 =  1ee 2
2
1 2

5

 
   and   An + 1 =  A2e n  so that  =



1n
nA      ...ee1

222
1   A   

 =   


2
2

2
1

e1

1
1ee 2

5






  =  

1e

e
1ee

2

2
2

2
1 2

5









  (using the S of a GP formula) = 


2
1

e2
1 

  

               



               
 
9 Once you have written down all relevant possible equations of motion, this question is really quite 

simple; the two results you are asked to prove arise from considering either times or distances to 
the point of collision. There is, however, one crucial realisation to make in the process, without 
which further progress is almost impossible; once noted, it seems terribly obvious, yet it probably 
doesn’t usually fall within the remit of standard A-level examination questions. 

 

 For P1,  , , , , , 01 


x cos1 ux 


cos1 utx  gy 


1 gtuy 


sin1
2

2
1

1 sin gtuty    
 

 For P2,  , , , , , 02 


x cos2 vx 


cos2 vtx  gy 


2 gtvy 


sin2
2

2
1

2 sin gtvty    

 Now P1 is at its greatest height when     t = 02 y


g

u sin
   y1 = h = 

g

u

2

sin 22 
 and it follows 

 that  u sin  = gh2    

 
 Note that if the two particles are at the same height at any two distinct times (one of which is  t = 0  
 here), then their vertical speeds are the same throughout their motions. Thus  u sin  = v sin . 
 

 y2 = 0, t  0    t = 
g

v sin2
. This is the time when P2 would land. Also, the collision occurs 

 when  x2 = b    t = 
cosv

b
 is the time of the collision. 

 

 Then    range  2
1

2 Pt   < t(collision) <  range  2Pt     (or by distances)  

   
g

v sin
 < 

cosv

b
 < 

g

v sin2
   

g

v  cossin2

 < b < 
g

v  cossin2 2

  

   
cot

)sin( 2

g

v
 < b < 

cot
)sin(2 2

g

v
. Using  u sin  = v sin = gh2  then gives 

 cot
2

g

gh
 < b < cot

4

g

gh
   cot2h  < b < cot4h . 

 
 One could repeat all this work for P1, but this is not necessary. Since the particles are at their 

maximum heights simultaneously (see the above reasoning) and would achieve their “ranges” 
simultaneously also, we have  cot2h  < a < cot4h . 

               
 
10 I always feel that collisions questions are very simple, since (as a rule) there are only the two main 

principles – Conservation of Linear Momentum and Newton’s Experimental Law of Restitution – 
to be applied. Such is the case here. Part (ii) is only rendered more difficult by the introduction of 
a number of repetitions, and then the question concludes with some pure mathematical work using 
logarithms. 

 
 (i)      Using CLM:  bmu = bmvB + mvA . 
    Using NEL:       u  = v  A – vB . 

      Solving simultaneously:  vA = 
1

2

b

bu
  and  vB = 

1

)1(




b

ub
.  

 Then  vA = u
b








 11

2
 2u –  as  b  , and  vA < 2u  always. 

A  B 
u 

bm 
vB 

m 
vA 

 



 (ii) 
  
 
      …   …   … 
 
 

       Using the results of (i),    v2 = u2 = u







1

2




;  u3 = uu
2

2 1

2

1

2


















 





; … etc. … 

       all the way down to  un = uu
n

n

1  

1  1

2

1

2


 

















 





 and  v = uu
n

n 

















 1

2

1

2







. 

       Since  un = 1
1

2





,  as   > 1, it follows that v can be made as large as possible. 

 

       In the case when   = 4,  v =   un

5
8  > 20u  requires  n log  5

8  > log 20     5
8log

20log
n . 

 

       Now  log 2 = 0.30103    log 8 = 3log 2 = 0.90309   
          and  log 5 = log 10 – log 2 = 1 – 0.30103 = 0.69897 
       so that  log  5

8  = log 8 – log 5 = 0.20412. 

       Also  log 20 = log 10 + log 2 = 1 + 0.30103 = 1.30103, so we have  
20412.0

30103.1
n . 

      Since  6  0.20412 = 1.22472   and   7  0.20412 = 1.42884,  nmin = 7. 
               

 
11 A few years ago, a standard “three-force” problem such as this would have elicited responses 

using Lami’s Theorem; since this tidy little result seems to have lapsed from the collective A-level 
consciousness, I shall run with the more popular, alternative Statics-question approach of 
resolving twice and taking moments. In order to get started, however, it is important to have a 
good, clear diagram suitably marked with correct angles. The later parts of the question consist 
mostly of trignometric work. 

 
   
       Res.   T sin(  ) + R sin( + ) = W 
        
       Res.   T cos(  ) = R cos( + )   
           C        
       A W.2l cos  = T.3l sin    
          
 
             
            
            
           

 Substituting to eliminate T ’s (e.g.)    T sin(  ) + 
)cos(

)cos(





T

 sin( + ) = 



cos2

sin3T
  

   2 cos    sin.coscos.sinsin.sincos.cos    

+ 2 cos    sin.coscos.sinsin.sincos.cos    

= 3 sin   sin.sincos.cos   
  
 
 

B1    B2  Bn  A  

u = u1 

  v1     v2  

u2 = v2 
    un = vn

   vn

   m     n m    n – 1      m m 

   v 

   l 

R T 

 B 
l 

A 

W 

2l 

 
  

 

 



 Dividing by cos  cos  cos         
   )sincos.)(tansin.tan(cos2)sincos.)(tansin.tan(cos2    
         = )tan.tan1(tan3    

 Multiplying out, cancelling and collecting up terms, and then dividing by tan  tan  then gives  
 the required answer  2 cot  + 3 tan  = cot . 
 

   = 30o,    = 45o    cot = 
3

1
.31.2   = 32 , 

 and  tan15o = tan(60o – 45o) = 
 

32

1
32

13

13

31

13
2











.  

               
 
12 In some ways, the pdf  f(x)  couldn’t be much simpler, consisting of just two horizontal straight-

line segments (in the non-zero part). Part (i) is then relatively routine – use “total prob. = 1” to 
find the value of k, before proceeding to find E(X); and the trickiest aspect of (ii) is in the 
inequalities work. You also need to realise that the median could fall in either of the two non-zero 
regions. For (iii), it is necessary only to follow through each possible value of M relative to E, the 
expectation. 

 
 Since the pdf is only non-zero between 0 & 1, and the area under its graph = 1, if  a, b are both  < 
 (>) 1  then the total area will be < (>) 1. Since we are given that  a > b, it must be the case that     
 a > 1  and  b < 1. 
 

 (i) 1 = dx =  dx +  dx  =   +  = ak + b – bk    k = 
1

0

)(f x
k

a
0

1

k

b 
0

k

ax  
k

bx
1

ba

b


1

. 

      E(X) = dx = dx + dx  = 
1

0

)(f xx 
k

ax
0


1

k

bx
0

2

2

kax








 + 

k

bx 12

2 







 = 

222

22 bkbak
    

        = 
2

1

2

)(

2















ba

bbab
 = 

)(2

21 22

ba

bbbba




= 
)(2

21

ba

abb




. 

 

 (ii) If  ak  2
1  (i.e. M  (0, k))  then  2

1



ba

aba
    2a – 2ab  a – b    a + b  2ab   

       and  aM = 2
1   or  M = 

a2

1
. 

 

       If  ak  2
1  (i.e. M  (k, 1)), and noting that this is equivalent to  a + b  2ab , 

       then  ak + (M – k)b = 2
1   or  (1 – M)b = 2

1    M = 1 – 
b2

1
   

 

 (iii) If  a + b  2ab , then   – M = 
aba

abb

2

1

)(2

21





 = 
)(2

2 2

baa

babaaba




 = 
)(2

)1( 2

baa

ab




 > 0 

        and the required result follows. 
 

        If  a + b   2ab , then   – M = 
bba

abb

2

1
1

)(2

21





= 
)(2

222 222

bab

babababbb




  

           = 
)(2

)1( 2

bab

ba




 > 0  as required. 

               



               
13  This question is really little more than examining the various cases that arise for each outcome and 

then doing a little bit of work algebraically. The result of part (i) is somewhat counter-intuitive, in 
that Rosalind should choose to play the more difficult opponent twice, while one intutively feels 
she should be playing the easier opponent. The real issue, however, is that she needs to beat both 
opponents (and not just win one game): examining the probabilities algebraically makes this very 
obvious. Part (ii) is a nice adaptation, where there is a cut-off point separating the cases when one 
strategy is always best from another situation when either strategy 1 or 2 can be best. Here, it is 
most important to demonstrate that the various conditions hold, and not simply state a couple of 
probabilities and hope they do the job. [It is perfectly possible to do (iii) by “trial-and-error”, but I 
have attempted to reproduce below an approach which incorporates a method for deciding the 
matter.] 

 
 (i) P(WPPQ) = P(WP WQ –) + P(LP WQ WP) = p . q. 1 + (1 – p)qp = pq(2 – p).   
      Similarly, P(WPQQ) = pq(2 – q)  and  P(WPPQ) – P(WPQQ) = pq(q – p) > 0  since  q > p. Thus, 
      P(WPPQ) > P(WPQQ) for all p, q and “Ros plays Pardeep twice” is always her best strategy. 
 
 (ii) SI:   P(W1) = P(WQ WP – –) + P(WQ LP WP –) + P(WQ LP LP WP) 

)  

 

            = pq + pq(1 – p) + pq(1 – p)2  or  pq(3 – 3p + p2) 
 

       SIII:  P(W3) = pq(3 – 3q + q2)  similarly. 
 

       SII: P(W2) = P(WP WQ – –) + P(LP WP WQ –) + P(WP LQ WQ –) + P(LP WP LQ WQ

                         = pq + pq(1 – p) + pq(1 – q) + pq(1 – p)(1 – q)   
            = pq(4 – 2p – 2q + pq)   or  pq(2 – p)(2 – q) . 

 
       P(W1) – P(W3) = pq(q – p)  ][3 qp   > 0  since  q > p  and  p + q < 2 < 3 so that SI is  
       always better than S3  
 
       P(W1) – P(W2) = pq  qpqpp 212   =  )1())(2( ppqppq   

                               > 0 whenever  q – p > 
pp

p







2

1
1

2

1
. 

       Now  p + 2
1  < q < 1    0 < p < 2

1     3
1  < 

p


2

1
1  < 2

1 , so that  SI always better than SII  

       when  q – p > 2
1 .   

 

       P(W1) – P(W2) > < 0    q – p > < 
p

p




2

1
. 

      Take  p = 4
1 , q = 2

1     q – p = 4
1  < 2

1   and  7
3

2

1





p

p
 > 4

1   so SII is better than SI. 

       Take  p = 4
1 , q = 4

3     q – p = 2
1 < 2

1   and  7
3

2

1





p

p
  so choosing   

   < 14
1

2
1

7
3    (say 16

1 ) will give p = 4
1 , q = 16

11   and  q – p = 16
7  > 7

3

2

1





p

p
  so that 

         SI is better than SII.   
 
 [I believe that  q – p > k  has k = 2

1  as the least positive k which always gives SI better than SII,   

  but it is a long time ago that the problem was originally devised and I may be wrong.] 
               



STEP Mathematics III 2010: Solutions 
 
Section A: Pure Mathematics 
 
1.  The first two parts are obtained by separating off the final term of the summation and 

expanding the brackets respectively giving ܥ ൌ
ଵ

ାଵ
ሺ݊ܣ   ାଵሻ, andݔ

ܤ ൌ
1

݊
ݔ

ଶ



ୀଵ

െ  ଶܣ

(the latter given in the question) . 
By comparison with the expression for B, 

ܦ ൌ
1

݊  1
ݔ

ଶ

ାଵ

ୀଵ

െ  ଶܥ

which by substituting for 

1

݊
ݔ

ଶ



ୀଵ

 

from the expression for B gives 

ܦ ൌ
1

݊  1
ሾ݊ሺܤ  ଶሻܣ  ାଵݔ

ଶሿ െ  ଶܥ

. 
Substituting for C from the initial result, the required expression can be obtained which can most 
neatly be written  

ܦ ൌ
݊

ሺ݊  1ሻଶ
ሾሺ݊  1ሻܤ  ሺܣ െ ାଵሻݔ

ଶሿ 

 
Thus ሺ݊  1ሻܦ ൌ ܤ݊ 



ାଵ
ሺܣ െ ାଵሻݔ

ଶ yielding the first inequality. 

 

Also, ܦ െ ܤ ൌ


ሺାଵሻమ
ሺܣ െ ାଵሻݔ

ଶ െ
ଵ

ାଵ
 and this quadratic expression is only negative if and ܤ

only if ሺܣ െ ାଵሻݔ
ଶ ൏

ାଵ


 .ܤ

Rearranging the inequality to make xn+1  the subject yields the required result. 
 
2.  The expression of cosh a in exponentials enables the integral to be written as 

න
1

ଶݔ  ሺ݁ݔ  ݁ିሻ  1

ଵ



 ݔ݀

which can in turn can be expressed as 

න
1

ሺݔ  ݁ሻሺݔ  ݁ିሻ
ݔ݀

ଵ



 

and so employing partial fractions this is 
1

ሺ݁ െ ݁ିሻ
݈݊ ൬

ݔ  ݁ି

ݔ  ݁
൰൨


ଵ

 



The evaluation of this with simplification of logarithms yields 
1

2 sinh ܽ
൭݈݊ ൬݁

1  ݁

1  ݁
൰൱ 

giving the required result. 
In part (ii), the same technique can be employed for both integrals giving, in the first case 

න
1

ሺݔ  ݁ሻሺݔ െ ݁ିሻ
ݔ݀

ஶ

ଵ

 

ൌ
1

ሺ݁  ݁ିሻ
݈݊ ൬

ݔ െ ݁ି

ݔ  ݁
൰൨
ଵ

ஶ

 

ൌ
1

2 cosh ܽ
ቆܽ  ݈݊ ቀcoth

ܽ

2
ቁቇ 

and in the second 

න
1

ሺݔଶ  ݁ሻሺݔଶ  ݁ିሻ

ஶ



 ݔ݀

ൌ
1

ሺ݁ െ ݁ିሻ
ቈ
1

݁ି

ଶ

tanିଵ ቆ
ݔ

݁ି

ଶ

ቇ െ
1

݁

ଶ

tanିଵ ቆ
ݔ

݁

ଶ

ቇ



ஶ

 

ൌ
1

2 sinhܽ
ቀ
ߨ

2
2 sinh

ܽ

2
ቁ 

or alternatively 
ߨ

4 cosh
ܽ
2

 

 
3.  The two primitive 4th roots of unity are േ݅ so ܥସሺݔሻ ൌ ሺݔ െ ݅ሻሺݔ  ݅ሻ ൌ ଶݔ  1 
 

ሻݔଵሺܥ ൌ ݔ െ ଶݔ  , 1 െ 1 ൌ ሺݔ െ 1ሻሺݔ  1ሻ  so  ܥଶሺݔሻ ൌ ݔ  1,  
ଷݔ െ 1 ൌ ሺݔ െ 1ሻሺݔଶ  ݔ  1ሻ  so  ܥଷሺݔሻ ൌ ଶݔ  ݔ  1 
ହݔ െ 1 ൌ ሺݔ െ 1ሻሺݔସ  ଷݔ  ଶݔ  ݔ  1ሻ  so  ܥହሺݔሻ ൌ ସݔ  ଷݔ  ଶݔ  ݔ  1 
ݔ െ 1 ൌ ሺݔଷ െ 1ሻሺݔଷ  1ሻ ൌ ሺݔଷ െ 1ሻሺݔ  1ሻሺݔଶ െ ݔ  1ሻ  so  ܥሺݔሻ ൌ ଶݔ െ ݔ  1 
 

In part (ii), ܥሺݔሻ ൌ 0 ⇒ ସݔ ൌ െ1 ⇒ ଼ݔ ൌ 1  so n is a multiple of 8, and as there are 4 primitive 
8th roots of unity, n must be 8. 
 
ݔ ൌ 1 ⇒ ݔ െ 1 ൌ 0 ⇒ ሺݔ െ 1ሻሺݔିଵ  ିଶݔ  ିଷݔ  ⋯ 1ሻ   
1 is the only non-primitive root as no power of any other root less than the pth  equals unity, 
because p is prime, so  ܥሺݔሻ ൌ ିଵݔ  ିଶݔ  ିଷݔ  ⋯ 1 
 
No root of  ܥሺݔሻ ൌ 0 is a root of  ܥ௧ሺݔሻ ൌ 0 for any ݐ ് ݊.  (For if ݐ ൏ ݊, by the definition of  
ሻ, there is no integer t such that ܽ௧ݔሺܥ ൌ 1 when  ܽ ൌ 1.  Similarly, if ݐ  ݊.) 
Thus if  ܥሺݔሻ ≡ ሻݔሺܥ  ሻ, and ifݔ௦ሺܥሻݔሺܥ ൌ 0, then ܥሺݔሻ ൌ 0 or ܥ௦ሺݔሻ ൌ 0 , so 
ݍ ൌ ݍ or  ݎ ൌ  .ݏ



If  ݍ ൌ ሻݔሺܥ then ,ݎ ≡ ሻݔ௦ሺܥ ሻ , and soݔሺܥ ≡ 1 which is not possible for positive s, and 
likewise in the alternative case. 
 
4.  (i)  As  ߙ satisfies both equations, ߙଶ  ߙܽ  ܾ ൌ 0 and  ߙଶ  ߙܿ  ݀ ൌ 0, so subtracting 
these the desired result is simply found. 
If ሺܾ െ ݀ሻଶ െ ܽሺܾ െ ݀ሻሺܽ െ ܿሻ  ܾሺܽ െ ܿሻଶ ൌ 0, then we may divide by ሺܽ െ ܿሻଶ, and find that 

െ
ሺିௗሻ

ሺିሻ
 satisfies ݔଶ  ݔܽ  ܾ ൌ 0.  But also, 

 ቀ
ሺିௗሻ

ሺିሻ
ቁ
ଶ

 ܿ ቀെ
ሺିௗሻ

ሺିሻ
ቁ  ݀ ൌ ቀ

ሺିௗሻ

ሺିሻ
ቁ
ଶ

 ܽ ቀെ
ሺିௗሻ

ሺିሻ
ቁ  ܾ  ሺܿ െ ܽሻ ቀെ

ሺିௗሻ

ሺିሻ
ቁ  ሺ݀ െ ܾሻ and 

so െ
ሺିௗሻ

ሺିሻ
 satisfies ݔଶ  ݔܿ  ݀ ൌ 0. 

On the other hand if there is a common root, then it is found at the start of the question and as it 
satisfies ߙଶ  ߙܽ  ܾ ൌ 0, the required result is found. 
If  ሺܾ െ ݀ሻଶ െ ܽሺܾ െ ݀ሻሺܽ െ ܿሻ  ܾሺܽ െ ܿሻଶ ൌ 0  and  ܽ ൌ ܿ, then ܾ ൌ ݀ and so the two 
equations are one and trivially have a common root.  Alternatively, if there is a common root and  
ܽ ൌ ܿ, then the initial subtraction yields  ܾ ൌ ݀, and so the result is trivially true. 
 
(ii)  If ሺܾ െ ሻଶݎ െ ܽሺܾ െ ሻሺܽݎ  ܾ െ ሻݍ  ܾሺܽ  ܾ െ ሻଶݍ ൌ 0, then ݔଶ  ݔܽ  ܾ ൌ 0  and  
ଶݔ  ሺݍ െ ܾሻݔ  ݎ ൌ 0  have a common root from (i), and so then do ݔଶ  ݔܽ  ܾ ൌ 0  and  
ଶݔሺݔ  ݔܽ  ܾሻ  ଶݔ  ሺݍ െ ܾሻݔ  ݎ ൌ 0 which is the required result. 
On the other hand, if the two equations have a common root ߙ, then ߙଶ  ߙܽ  ܾ ൌ 0 
and ߙଷ  ሺܽ  1ሻߙଶ  ߙݍ  ݎ ൌ 0 , and thus so does 
ଷߙ   ሺܽ  1ሻߙଶ  ߙݍ  ݎ െ ଶߙሺߙ  ߙܽ  ܾሻ ൌ 0 which is a quadratic equation and we can use 
the result from (i) again. 

Using ൌ
ହ

ଶ
ݍ ,  ൌ

ହ

ଶ
ݎ ,  ൌ

ଵ

ଶ
 , in the given condition, we obtain a cubic equation in b, 

 ܾଷ െ
ଷ

ଶ
ܾଶ 

ଵ

ସ
ܾ 

ଵ

ସ
ൌ 0, which has a solution ܾ ൌ 1, meaning the other two can be simply 

obtained as  ܾ ൌ
ଵേ√ହ

ସ
. 

 

5.  The line CP can be shown to have equation ሺ1 െ ݊ሻݕ ൌ ݔ െ ܽ݊ and so R is ቀ0,


ିଵ
ቁ 

So, similarly, S must be ቀ


ିଵ
, 0ቁ. 

Thus RS has equation ݊ሺ݉ െ 1ሻݔ  ݉ሺ݊ െ 1ሻݕ ൌ ܽ݉݊ and PQ has equation ݉ݔ  ݕ݊ ൌ ܽ݉݊. 
As the coordinates of T satisfy both equations, they satisfy their difference which is 

 ሺ݉݊ െ ݊ െ݉ሻሺݔ  ሻݕ ൌ 0.  As RS and PQ intersect, 



്

ሺିଵሻ

ሺିଵሻ
 which yields 

 ሺ݉ െ ݊ሻሺ݉݊ െ݉ െ ݊ሻ ് 0 and hence ሺ݉݊ െ݉ െ ݊ሻ ് 0 implying that T’s coordinates 
satisfy ݔ  ݕ ൌ 0 giving the desired result.  (Alternatively,  ݉݊ െ݉ െ ݊ ൌ 0 ⇔ ݊ ൌ



ିଵ
൏ 0  , 

which is a contradiction.) 
The construction can be achieved more than one way, but one is to label the given square ABCD 
anti-clockwise, choose points on AB and AD different distances from A, label them P and Q, 
construct CP and CQ, and find their intersections with AD and AB, R and S, respectively, and 
find the intersection of PQ and RS, label it T, then TA is perpendicular to AC.  Rotating the 
labelling through a right angle and repeating three more times achieves the desired square. 
 



6.  ଵܲ is ሺcos߮ , sin߮ , 0ሻ, ଶܲ is ሺcos߮ cos ߣ , sin߮ cos ߣ , sin ሻ, ܳଵ is ሺെsin߮ߣ , cos߮ , 0ሻ, ܳଶ is 
ሺെsin߮ , cos߮ , 0ሻ, ܴଵ is ሺ0,0,1ሻ and ܴଶ is ሺെ cos߮ sin ߣ , െsin߮ sin ߣ , cos  .ሻߣ
The scalar product ܱ ଶܲ ∙ ܱ ܲ gives the quoted result immediately.  The direction of the axis can 

be found from the vector product ൭
1
0
0
൱ ൈ ൭

cos߮ cos ߣ
sin߮ cos ߣ
sin ߣ

൱ giving the direction of the axis as 

൭െ
0

sin ߣ
sin߮ cos ߣ

൱. 

 
7.  The initial result can be obtained by differentiating y directly twice obtaining 
ௗ௬

ௗ௫
ൌ െ sinሺ݉ sinିଵ ሻݔ



√ଵି௫మ
  

ௗమ௬

ௗ௫మ
ൌ െ cosሺ݉ sinିଵ ሻݔ

మ

ଵି௫మ
െ sinሺ݉ sinିଵ ሻݔ

௫

ሺଵି௫మሻ
య
మ

 and substituting into the LHS. 

(Slightly more elegant is to rearrange as cosିଵ ݕ ൌ ݉ sinିଵ  differentiate and then square to ,ݔ

obtain ሺ1 െ ଶሻݔ ቀ
ௗ௬

ௗ௫
ቁ
ଶ
ൌ ݉ଶሺ1 െ  (.ଶሻ and then differentiate a second timeݕ

The two similar results are ሺ1 െ ଶሻݔ
ௗయ௬

ௗ௫య
െ ݔ3

ௗమ௬

ௗ௫మ
 ሺ݉ଶ െ 1ሻ

ௗ௬

ௗ௫
ൌ 0 and 

 ሺ1 െ ଶሻݔ
ௗర௬

ௗ௫ర
െ ݔ5

ௗయ௬

ௗ௫య
 ሺ݉ଶ െ 4ሻ

ௗమ௬

ௗ௫మ
ൌ 0, which lead to the conjecture 

 ሺ1 െ ଶሻݔ
ௗశమ௬

ௗ௫శమ
െ ሺ2݊  1ሻݔ

ௗశభ௬

ௗ௫శభ
 ሺ݉ଶ െ ݊ଶሻ

ௗ௬

ௗ௫
ൌ 0 which is proved simply by induction. 

 

Using ൌ 0 , we find that ݕ ൌ 1 , 
ௗ௬

ௗ௫
ൌ 0 , 

ௗమ௬

ௗ௫మ
ൌ െ݉ଶ , 

ௗయ௬

ௗ௫య
ൌ 0 , 

ௗర௬

ௗ௫ర
ൌ ݉ଶሺ݉ଶ െ 4ሻ 

and so the Maclaurin series commences ݕ ൌ 1 െ
మ

ଶ!
ଶݔ 

మ൫మିଶమ൯

ସ!
ସݔ  ⋯  

 
Now replacing x by sin  ,ߠ

 cos݉ߠ ൌ 1 െ
మ

ଶ!
ଶݔ 

మ൫మିଶమ൯

ସ!
ସݔ  ⋯ ൌ 1 െ

మ

ଶ!
sinଶ ߠ 

మ൫మିଶమ൯

ସ!
sinସ ߠ ⋯ 

All the odd differentials are zero, and the even ones are ሺെ1ሻାଵ݉ଶሺ݉ଶ െ 2ଶሻ… ሺ݉ଶ െ ሺ2݇ሻଶሻ, 
so if m is even all the terms are zero from a certain point (when ݉ ൌ 2݇) and thus the series 
terminates and is a polynomial in sin  .of degree m ,ߠ
 
8.  Substituting for ܲሺݔሻ, the desired integral is seen to be the reverse of the quotient rule, i.e. 

ܴሺݔሻ

ܳሺݔሻ
ሺ݇ሻ 

To choose a suitable function ܴሺݔሻ in part (i), substitution of ܴሺݔሻ ൌ ܽ  ݔܾ   ଶ andݔܿ
ܳሺݔሻ ൌ 1  ݔ2   ଶ in the given expression yields a quadratic equation, and equating theݔ3
coefficients of the powers of x gives 5 ൌ െ3ܾ  2ܿ , െ2 ൌ െ3ܽ  ܿ , െ3 ൌ െ2ܽ  ܾ. 
These three equations are linearly dependent and so their solution is not unique. 
Choosing, for example  ܽ ൌ 0 , ൌ െ3 , ܿ ൌ െ2 and then  ܽ ൌ 1 , ܾ ൌ െ1 , ܿ ൌ 1 gives solutions 

which are related by 
ଵି௫ା௫మ

ଵାଶ௫ାଷ௫మ
ൌ

ଵାଶ௫ାଷ௫మିଷ௫ିଶ௫మ

ଵାଶ௫ାଷ௫మ
ൌ 1 

ିଷ௫ିଶ௫మ

ଵାଶ௫ାଷ௫మ
  i.e. the same bar the 

 
 arbitrary constant. 



(ii)  Rearranging the equation to be solved as  
ௗ௬

ௗ௫


ሺୱ୧୬௫ିଶୡ୭ୱ௫ሻ

ሺଵାୡ୭ୱ௫ାଶ ୱ୧୬௫ሻ
ݕ ൌ

ሺହିଷୡ୭ୱ௫ାସୱ୧୬௫ሻ

ሺଵାୡ୭ୱ௫ାଶୱ୧୬௫ሻ
, the 

integrating factor is ݁
ሺ౩ೣషమౙ౩ೣሻ

ሺభశౙ౩ೣశమ౩ೣሻ
ௗ௫
ൌ ݁ି ୪୬ሺଵାୡ୭ୱ௫ାଶ ୱ୧୬௫ሻ ൌ

ଵ

ଵାୡ୭ୱ ௫ାଶୱ୧୬௫
 

As a result, the RHS we require to integrate is 
ሺହିଷୡ୭ୱ௫ାସୱ୧୬௫ሻ

ሺଵାୡ୭ୱ௫ାଶ ୱ୧୬௫ሻమ
 

Repeating similar working to part (i), except with ܳሺݔሻ ൌ 1  cos ݔ  2 sin  and ݔ
 ܴሺݔሻ ൌ ܽ  ܾ sin ݔ  ܿ cos  ,gives three linearly dependent equations ,ݔ
 5 ൌ ܾ െ 2ܿ , െ3 ൌ ܾ െ 2ܽ , 4 ൌ ܽ െ ܿ 
Choosing e.g.  ൌ 4 , ܾ ൌ 5 , ܿ ൌ 0, the solution is ݕ ൌ 4  5 sin ݔ  ݇ሺ1  cos ݔ  2 sin  ሻݔ
 
 
 
 
Section B: Mechanics 
 

9.  Resolving radially inwards for the mass P,  ݉݃ sin  ߠ െ ܴ ൌ
௩మ


 ,  

where R is the normal reaction of the block on P, and v is the (common) speed of the masses 
when OP makes an angle ߠ with the table. 
 

Conserving energy,  
ଵ

ଶ
ଶݒ݉ 

ଵ

ଶ
ଶݒܯ  ݉݃ܽ sin ߠ െ ߠܽ݃ܯ ൌ 0 , and making ݒଶ the subject of 

this formula to substitute in the first equation re-arranged for R,  

ܴ ൌ ݉݃ sin  ߠ െ
ଶሺெఏିୱ୧୬ఏሻ

ାெ
ൌ

൫ሺଷାெሻ ୱ୧୬ఏିଶெఏ൯

ାெ
  is found. 

Remaining in contact requires this expression to be non-negative for all  , 0  ߠ 
గ

ଶ
. 

Considering the graphs of   ݕ ൌ asin ݕ and ߠ ൌ for  0  ߠܾ  ߠ 
గ

ଶ
 ,  

asin ߠ െ ߠܾ  0, ,ߠ∀ 0  ߠ 
గ

ଶ
   if and only if  asin ߠ െ ߠܾ  0  for ߠ ൌ

గ

ଶ
 

so ܴ  0  for all ߠ, 0  ߠ 
గ

ଶ
  if and only if  ሺ3݉ ܯሻ sin

గ

ଶ
െ ܯ2

గ

ଶ
 0 which gives the 

required result. 
 

10.  Resolving perpendicularly to OB,  ݉ܽ߶ሷ ൌ െܶ cos ቀ
గ

ଶ
െ ߠ െ ߶ቁ , where the tension in the 

elastic string is  ܶ ൌ ߣ
ି


.  The sine rule 



ୱ୧୬ఏ
ൌ



ୱ୧୬థ
 

Putting these three results together gives the required expression. 

Also from the sine rule,  


ୱ୧୬ሺఏାథሻ
ൌ



ୱ୧୬ఏ
, so for ߶ and ߠ small, 



ఏାథ
ൎ



ఏ
 yielding the desired 

result. 
From this result, ߠ may be made the subject of the formula, so that the result 

 ݉ܽ߶ሷ ൌ െߣ ቀ
 ୱ୧୬థ

 ୱ୧୬ఏ
െ 1ቁ sinሺߠ  ߶ሻ, which for small angles becomes 

 ݉ܽ߶ሷ ൎ െߣ ቀ
థ

ఏ
െ 1ቁ ሺߠ  ߶ሻ can be written ߶ሷ ൎ െ

ఒ


ቀ
ିି


ቁ ቀ



ି
ቁ߶ 

and hence the period is ߬ ൎ ටߨ2
ሺିሻ

ఒሺିିሻ
. 

 
 



11.  If the acceleration of the block is  ܽᇱ , and the acceleration of the bullet is  ܽᇱᇱ, then 
ܴ െ ܯሺߤ ݉ሻ݃ ൌ ᇱ and െܴܽܯ ൌ ݉ܽᇱᇱ , 

so the relative acceleration  ܽ ൌ ܽᇱ െ ܽᇱᇱ ൌ
ோ




ோିఓሺெାሻ

ெ
 

 
The initial velocity of the bullet relative to the block is –  and the final velocity of the bullet ݑ
relative to the block is 0.  If the time between the bullet entering the block and stopping moving 

through the block is T, then using” ݒ ൌ ݑ  0 ,“ ݐܽ ൌ െݑ  ቀ
ோ




ோିఓሺெାሻ

ெ
ቁܶ 

For the block, the initial velocity is 0 , the final velocity is ݒ , and again using ݒ ൌ ݑ   , ݐܽ
 

ݒ ൌ ܽᇱܶ ൌ
ோିఓሺெାሻ

ெ

௨

ቀ
ೃ


ା
ೃషഋሺಾశሻ

ಾ
ቁ
  and so 

ݒܽ  ൌ ቀ
ோ




ோିఓሺெାሻ

ெ
ቁ
ோିఓሺெାሻ

ெ

௨

ቀ
ೃ


ା
ೃషഋሺಾశሻ

ಾ
ቁ
ൌ

ோ௨ିఓሺெାሻ௨

ெ
 as required. 

If the distance moved by the block whilst the bullet is moving through the block is ݏ,  

using” ݒଶ ൌ ଶݑ  ଶݒ  ,“ ݏ2ܽ ൌ 2ܽᇱݏ andso ݏ ൌ
௩మ

ଶᇲ
ൌ

ெ௩మ

ଶሺோିఓሺெାሻሻ
ൌ

ெ௩మ

ଶ
ಾೌೡ

ೠ

ൌ
௨௩

ଶ
 

 
Once the bullet stops moving through the block, the next initial velocity of block/bullet is ݒ, the 
final velocity is 0, the acceleration is –  ᇱusingݏ so the distance moved ,݃ߤ

ଶݒ“  ൌ ଶݑ  is given by 0 ”ݏ2ܽ ൌ ଶݒ െ ᇱݏ .ᇱ i.eݏ݃ߤ2 ൌ
௩మ

ଶఓ
 

Thus the total distance moved is 
௨௩

ଶ


௩మ

ଶఓ
ൌ  

௩

ଶఓ
ሾݑ݃ߤ   ሿݒܽ

ൌ
௩

ଶఓ
ቂݑ݃ߤ 

ோ௨ିఓሺெାሻ௨

ெ
ቃ  

 

ൌ
௨௩

ଶఓ
ቂ
ோିఓ

ெ
ቃ  

 

ൌ
௨௩

ଶఓ
ቂ
ோିఓ

ெ
ቃ

ଵ
ೃ


ା
ೃషഋሺಾశሻ

ಾ

  

 

ൌ
௨௩

ଶఓ
ቂ
ோିఓ

ெ
ቃ

ெ

ሺெାሻሺோିఓሻ
ൌ

௨௩

ଶሺெାሻఓ
  

 

If ܴ ൏ ሺܯ ݉ሻ݃ߤ, then the block does not move, and the bullet penetrates to a depth 
௨మ

ଶோ
. 

 
 
Section C: Probability and Statistics 
 
12.   ܵ െ ܵݎ ൌ 1  ݎ݀  ଶݎ݀ ⋯ ݎ݀  ⋯  which is 1 plus an infinite GP.  Summing that GP 
and making S the subject produces the displayed result. 
 
ሻܣሺܧ ൌ 1ܽ  2ሺ1 െ ܽሻܽ  3ሺ1 െ ܽሻଶܽ  ⋯ ݊ሺ1 െ ܽሻିଵܽ ⋯  so making use of the first 

result with ݀ ൌ ݎ ,1 ൌ ሺ1 െ ܽሻ,  ܧሺܣሻ ൌ ܽ ൜
ଵ

ଵିሺଵିሻ


ሺଵିሻ

൫ଵିሺଵିሻ൯
మൠ ൌ ܽ ቄ

ଵ




ଵି

మ
ቅ ൌ

ଵ


  



ߙ ൌ ܽ  ሺ1 െ ܽሻሺ1 െ ܾሻߙ ൌ ܽ  ܽᇱܾᇱߙ or alternatively, ߙ ൌ ܽ  ܽᇱܾᇱܽ  ܽᇱ
ଶ
ܾᇱ
ଶ
ܽ  ⋯  which 

both lead to the required result. 

ߚ ൌ 1 െ ߙ ൌ
ᇲ

ଵିᇲᇲ
 or alternatively, ߚ ൌ ܽᇱܾ  ܽᇱ

ଶ
ܾᇱܾ  ܽᇱ

ଷ
ܾᇱ
ଶ
ܾ  ⋯ ൌ

ᇲ

ଵିᇲᇲ
 

 
The expected number of shots, S, is given by 
ሺܵሻܧ  ൌ 1ܽ  2ܽᇱܾ  3ܽᇱܾᇱܽ  4ܽᇱ

ଶ
ܾᇱܾ  5ܽᇱ

ଶ
ܾᇱ
ଶ
ܽ  ⋯  

ൌ ܽ൛1  3ܽᇱܾᇱ  5ܽᇱ
ଶ
ܾᇱ
ଶ
 ⋯ ൟ  2ܽᇱܾሼ1  2ܽᇱܾᇱ  ⋯ ሽ  

which using the initial result of the question ൌ ܽ ቂ
ଵ

ଵିᇲᇲ


ଶᇲᇲ

ሺଵିᇲᇲሻమ
ቃ  2ܽᇱܾ ቂ

ଵ

ଵିᇲᇲ


ᇲᇲ

ሺଵିᇲᇲሻమ
ቃ 

and can be shown to simplify to the required expression.  
 
,ሺܼଵݎݎܥ  .13 ܼଶሻ ൌ 0 

ሺܧ ଶܻሻ ൌ ܧ ቀߩଵଶܼଵ  ሺ1 െ ଵଶߩ
ଶ ሻ

భ

మܼଶቁ ൌ ሺܼଵሻܧଵଶߩ  ሺ1 െ ଵଶߩ
ଶ ሻ

భ

మܧሺܼଶሻ ൌ 0  

ሺݎܸܽ ଶܻሻ ൌ ݎܸܽ ቀߩଵଶܼଵ  ሺ1 െ ଵଶߩ
ଶ ሻ

భ

మܼଶቁ ൌ ଵଶߩ
ଶ ሺܼଵሻݎܸܽ  ሺ1 െ ଵଶߩ

ଶ ሻܸܽݎሺܼଶሻ  

ൌ ଵଶߩ
ଶ  ሺ1 െ ଵଶߩ

ଶ ሻ ൌ 1  
 
As ܧሺ ଵܻሻ ൌ ሺܧ ଶܻሻ ൌ 0 and ܸܽݎሺ ଵܻሻ ൌ ሺݎܸܽ ଶܻሻ ൌ 1,  

ሺݎݎܥ ଵܻ, ଶܻሻ ൌ
௩ሺభ,మሻ

ඥሺభሻሺమሻ
ൌ ሺݒܥ ଵܻ, ଶܻሻ ൌ ሺܧ ଵܻ ଶܻሻ െ ሺܧ ଵܻሻܧሺ ଶܻሻ  

ൌ ܧ ቀߩଵଶܼଵ
ଶ  ሺ1 െ ଵଶߩ

ଶ ሻ
భ

మܼଵܼଶቁ ൌ ሺܼଵሻݎଵଶܸܽߩ  ሺ1 െ ଵଶߩ
ଶ ሻ

భ

మܧሺܼଵሻܧሺܼଶሻ ൌ  ଵଶߩ

 
ሺܧ ଷܻሻ ൌ ሺܼܽଵܧ  ܾܼଶ  ܼܿଷሻ ൌ ሺܼଵሻܧܽ  ሺܼଶሻܧܾ  ሺܼଷሻܧܿ ൌ 0 is given. 
ሺݎܸܽ ଷܻሻ ൌ 1  implies  ܽଶ  ܾଶ  ܿଶ ൌ 1 
ሺݎݎܥ ଵܻ, ଷܻሻ ൌ ܽ  ଵଷ   impliesߩ ൌ  .ଵଷ as seen beforeߩ

ሺݎݎܥ ଶܻ, ଷܻሻ ൌ ଵଶܽߩ  ଶଷ   impliesߩ  ሺ1 െ ଵଶߩ
ଶ ሻ

భ

మܾ ൌ  ଶଷߩ

and hence ܽ ൌ ܾ ,ଵଷߩ ൌ
ఘమయିఘభమఘభయ

൫ଵିఘభమ
మ ൯

భ
మ

 , ܿ ൌ ට1 െ ଵଷߩ
ଶ െ

ሺఘమయିఘభమఘభయሻ
మ

൫ଵିఘభమ
మ ൯

 

 
 
ܺ ൌ ߤ  ߪ ܻ  for  ݅ ൌ 1,2,3  as ܧሺ ܺሻ ൌ ߤሺܧ  ߪ ܻሻ ൌ ሻߤሺܧ  ߪሺܧ ܻሻ ൌ ߤ  ሺܧߪ ܻሻ ൌ  ,ߤ
ሺݎܸܽ ܺሻ ൌ ߤሺݎܸܽ  ߪ ܻሻ ൌ ߪሺݎܸܽ ܻሻ ൌ ߪ

ଶܸܽݎሺ ܻሻ ൌ ߪ
ଶ , and 

൫ݎݎܥ ܺ, ܺ൯ ൌ ൫ݎݎܥ ܻ, ܻ൯ ൌ  . as a linear transformation does not affect correlationߩ
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