Quad in quad
 Vid Kavčič
 high school Srednja šola Črnomelj
 Slovenia

Is the area of $P Q R S$ always the same fraction of the area of $A B C D$? What is the size of this fraction?

1 Picture

At the beginning the best option is to make a detailed sketch of quadrilateral $A B C D$ and a smaller quadrilateral $P Q R S$, which is marked correctly. The midpoints of the sides of a larger quadrilateral are vertexes of $P Q R S$.

Figure 1: Faithful sketch

2 First findings

2.1 Triangles CRS and CBD

Triangles $C R S$ and $C B D$ are interesting; because the points S and R are the midpoints of the sides of a larger quadrilateral, and they are the midpoints of the triangle $C B D$ and therefore the ratio is:

$$
\frac{|D C|}{|C S|}=\frac{|C B|}{|C R|}=2
$$

which means the triangles $C R S$ and $C B D$ are similar.

$$
|D B|:|S R|=2
$$

We also observe that the line segments $S R$ in $D B$ are parallel.

2.2 Triangles APQ in ADB

Deduction is the same as above.

$$
\frac{|A D|}{|A P|}=\frac{|A B|}{|A Q|}=\frac{|D B|}{|P Q|}=2
$$

Therefore the line segments $P Q$ and $D B$ are parallel, which is also true that line segments $P Q$ and $S R$ are parallel, as well.

2.3 Triangles DSP in DCA

$$
\frac{|D C|}{|D S|}=\frac{|D A|}{|D P|}=\frac{|A C|}{|P S|}=2
$$

In triangles DSP in DCA the line segments $P S$ and $A C$ are surprisingly parallel.

2.4 Triangles BQR in BAC

$$
\frac{|B Q|}{|B A|}=\frac{|B R|}{|B C|}=\frac{|Q R|}{|A C|}=2
$$

Line segments $Q R$ are $A C$ parallel, which is equally true for segments $Q R$ and $P S$.

3 Quadrilateral PQRS is a parallelogram

$P Q R S$ is a parallelogram, because the segments $P S$ and $Q R$ are parallel, which is similar for $P Q$ and $S R$.

4 Areas

Diagonals divide the quadrilateral $A B C D$ into four large triangles; let's have a look at that type triangle near the point R. The triangle is divided into two small triangles and one small parallelogram. Making a^{\prime} and b^{\prime} shorter sides of small parallelogram, shorter sides of the two small triangles are the same length as a^{\prime} and b^{\prime} because of the similar triangles $A P Q$ and $A D B$ (or $B Q R$ and $B A C$). The area of both small triangles is equal to the area of small parallelogram. If we aren't sure about this, triangle area formula can be used:

$$
S=\frac{1}{2} a^{\prime} \cdot b^{\prime} \cdot \sin \alpha
$$

We can claim similarly about three other large triangles.
It is now obvious that the area of triangles $C R S, B Q R, A P Q$ and $D S P$ is equal to the area of parallelogram $P Q R S$; in other words - the area of parallelogram $P Q R S$ is a half of the area of the quadrilateral $A B C D$.

The procedure with a concave quadrilateral is the same (similar triangles).

