Draw any convex quadrilateral and find the midpoints of the four edges. Join the midpoints to form a new quadrilateral.

A convex quadrilateral is one where all of the angles are less than 180°. Alternatively you can use the definition that both diagonals lie inside the shape.

Try it a few times starting with different convex quadrilaterals.
What do you notice about the new quadrilaterals formed by joining the midpoints?
Does this always happen?
Can you find a counter-example?
Can you make a conjecture?
Can you prove your conjecture?

Is the area of PQRS always the same fraction of the area of $A B C D$? Can you explain why?

Do these results still hold if $A B C D$ is a concave quadrilateral?
A concave quadrilateral is one where one angle is greater than 180°, for example you could draw an "arrowhead" shape.

