Draw a convex quadrilateral and then join the adjacent midpoints of the four edges. You should find that the quadrilateral that is formed will always be a parallelogram.

Here is a diagram and a proof that has been scrambled up.
Can you rearrange it into its original order?

This means that two of the sides are parallel, and they are the same length, therefore $P Q R S$ is a parallelogram	A
Therefore $\overrightarrow{Q R}=\frac{1}{2} \overrightarrow{A C}$	B
Let $\overrightarrow{A D}=\boldsymbol{a}, \overrightarrow{D C}=\boldsymbol{d}, \overrightarrow{A B}=\boldsymbol{b}$ and $\overrightarrow{B C}=\boldsymbol{c}$	C
$\overrightarrow{Q R}=\frac{1}{2} \overrightarrow{A B}+\frac{1}{2} \overrightarrow{B C}=\frac{1}{2}(\boldsymbol{b}+\boldsymbol{c})$	D
$\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=\boldsymbol{b}+\boldsymbol{c}$	E
$\overrightarrow{P S}=\frac{1}{2} \overrightarrow{A D}+\frac{1}{2} \overrightarrow{D C}=\frac{1}{2}(\boldsymbol{a}+\boldsymbol{d})$	F
Therefore $\overrightarrow{P S}=\frac{1}{2} \overrightarrow{A C}$	G
Therefore $\overrightarrow{P S}=\overrightarrow{Q R}$	H
$\overrightarrow{A C}=\overrightarrow{A D}+\overrightarrow{D C}=\boldsymbol{a}+\boldsymbol{d}$	I

