

Draw a convex quadrilateral and then join the adjacent midpoints of the four edges. You should find that the quadrilateral that is formed will always be a parallelogram.

Here is a diagram and a proof that has been scrambled up.

Can you rearrange it into its original order?

This means that two of the sides are parallel, and they are the same length, therefore <i>PQRS</i> is a parallelogram	A
Therefore $\vec{QR} = \frac{1}{2}\vec{AC}$	В
Let $\vec{AD} = \boldsymbol{a}$, $\vec{DC} = \boldsymbol{d}$, $\vec{AB} = \boldsymbol{b}$ and $\vec{BC} = \boldsymbol{c}$	С
$\overrightarrow{QR} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} = \frac{1}{2}(\boldsymbol{b} + \boldsymbol{c})$	D
$\vec{AC} = \vec{AB} + \vec{BC} = \boldsymbol{b} + \boldsymbol{c}$	E
$\overrightarrow{PS} = \frac{1}{2}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} = \frac{1}{2}(\boldsymbol{a} + \boldsymbol{d})$	F
Therefore $\vec{PS} = \frac{1}{2}\vec{AC}$	G
Therefore $\vec{PS} = \vec{QR}$	Н
$\vec{AC} = \vec{AD} + \vec{DC} = \boldsymbol{a} + \boldsymbol{d}$	Ι