Draw a convex quadrilateral and then join the adjacent midpoints of the four edges. You should find that the area of the new quadrilateral is half the area of the original quadrilateral.

Here is a diagram and a proof that has been scrambled up.
Can you rearrange it into its original order?

Therefore $X=\frac{1}{2} a d \sin \delta+\frac{1}{2} b c \sin \beta$	A
Area of $\triangle A D C=\frac{1}{2} a d \sin \delta$ and area of $\triangle A B C=\frac{1}{2} b c \sin \beta$	B
Therefore $P Q R S=X-\frac{1}{4} \times 2 X=\frac{1}{2} X$, and so the area of $P Q R S$ is equal to half the area of $A B C D$	C
Area of $\triangle S D P=\frac{1}{2} \times \frac{1}{2} a \times \frac{1}{2} d \sin \delta=\frac{1}{8} a d \sin \delta$	D
Area of $\triangle B A D=\frac{1}{2} a b \sin \alpha$ and area of $\triangle B C D=\frac{1}{2} c d \sin \gamma$	E
Let the area of $A B C D=X$	F
Rearranging gives $P Q R S=X-\frac{1}{4}\left[\left(\frac{1}{2} a b \sin \alpha+\frac{1}{2} c d \sin \gamma\right)+\left(\frac{1}{2} a d \sin \delta+\frac{1}{2} b c \sin \beta\right)\right]$	
Using previous results for X this gives $P Q R S=X-\frac{1}{4}[X+X]$	H
The area of $P Q R S$ is given by $P Q R S=A B C D-(\triangle P A Q+\triangle Q B R+\triangle R C S+\triangle S D P)$	I
Therefore $X=\frac{1}{2} a b \sin \alpha+\frac{1}{2} c d \sin \gamma$	M
We have $P Q R S=X-\left(\frac{1}{8} a b \sin \alpha+\frac{1}{8} b c \sin \beta+\frac{1}{8} c d \sin \gamma+\frac{1}{8} a d \sin \delta\right)$	K
Kimarly we have areas $\triangle P A Q=\frac{1}{8} a b \sin \alpha, \triangle Q B R=\frac{1}{8} b c \sin \beta$ and $\triangle R C S=\frac{1}{8} c d \sin \gamma$	$\angle B C D=\gamma$ and $\angle C D A=\delta$

