

Charlie wants to know how many factors 360 has. *How would you work it out?*

Charlie started by working out the prime factorisation of 360.

 $\begin{array}{l} 360 = 2\times180\\ = 2\times2\times90\\ = 2\times2\times2\times45\\ = 2\times2\times2\times3\times15\\ = 2\times2\times2\times3\times3\times5\\ \text{So } 360 = 2^3\times3^2\times5. \end{array}$

Then he made a table to list the 24 possible combinations of the prime factors.

2^{0}							2^{1}						2^3		
3^{0}		3^1		3^{2}		3^0		3^{1}		3^{2}				3^{2}	
5^0	5^1	5^0	5^1	5^0	5^1	5^0	5^1	5^0	5^1	5^0	5^1			5^0	5^1

So the first branch gives us $2^0 \times 3^0 \times 5^0 = 1$ the second branch gives us $2^0 \times 3^0 \times 5^1 = 5$...

... the fourth branch gives us $2^0\times 3^1\times 5^1=15$...

... the eleventh branch gives us $2^1 \times 3^2 \times 5^0 = 18$, and so on.

Charlie thinks these numbers also have exactly 24 factors. Can you use Charlie's method to explain why?

 $25725 = 5^{2} \times 3^{1} \times 7^{3}$ $217503 = 11^{1} \times 13^{3} \times 3^{2}$ $312500 = 5^{7} \times 2^{2}$ $690625 = 17^{1} \times 13^{1} \times 5^{5}$ $94143178827 = 3^{23}$

Can you find a number with exactly 14 factors? Can you find the smallest such number?

Which numbers have an odd number of factors?

http://nrich.maths.org/480 © University of Cambridge