Charlie wants to know how many factors 360 has. How would you work it out?

Charlie started by working out the prime factorisation of 360.

$$
\begin{aligned}
360 & =2 \times 180 \\
& =2 \times 2 \times 90 \\
& =2 \times 2 \times 2 \times 45 \\
& =2 \times 2 \times 2 \times 3 \times 15 \\
& =2 \times 2 \times 2 \times 3 \times 3 \times 5
\end{aligned}
$$

So $360=2^{3} \times \times 3^{2} \times 5$.
Then he made a table to list the 24 possible combinations of the prime factors.

2^{0}						2^{1}						..	2^{3}		
3^{0}		3^{1}		3^{2}		3^{0}		3^{1}		3^{2}		...		3^{2}	
5^{0}	5^{1}	5^{0}	5^{1}	5^{0}	$5{ }^{1}$	5^{0}	$5{ }^{1}$	5^{0}	5^{1}	5^{0}	5^{1}	...		5^{0}	5^{1}

So the first branch gives us $2^{0} \times 3^{0} \times 5^{0}=1$ the second branch gives us $2^{0} \times 3^{0} \times 5^{1}=5 \ldots$
... the fourth branch gives us $2^{0} \times 3^{1} \times 5^{1}=15 \ldots$
... the eleventh branch gives us $2^{1} \times 3^{2} \times 5^{0}=18$, and so on.

Charlie thinks these numbers also have exactly 24 factors. Can you use
Charlie's method to explain why?

$$
\begin{aligned}
& 25725=5^{2} \times 3^{1} \times 7^{3} \\
& 217503=11^{1} \times 13^{3} \times 3^{2} \\
& 312500=5^{7} \times 2^{2} \\
& 690625=17^{1} \times 13^{1} \times 5^{5} \\
& 94143178827=3^{23}
\end{aligned}
$$

Can you find a number with exactly 14 factors?
Can you find the smallest such number?
Which numbers have an odd number of factors?

