Take Three from Five

Charlie invited James and Caroline to give him sets of five integers (whole numbers).
Each time he chose three integers that added together to make a multiple of 3:

					TOTAL
3	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{7}$	2	18
$\mathbf{7}$	$\mathbf{1 7}$	$\mathbf{1 5}$	8	10	39
20	$\mathbf{1 5}$	$\mathbf{6}$	11	$\mathbf{1 2}$	33
$\mathbf{2 3}$	$\mathbf{1 6}$	$\mathbf{9}$	21	36	48
$\mathbf{9 9}$	$\mathbf{5 7}$	5	$\mathbf{7 2}$	23	$\mathbf{2 2 8}$
$\mathbf{3 1 2}$	$\mathbf{9 7}$	445	$\mathbf{4 5 2}$	29	861
-1	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{1}$	1	0

Charlie challenged Caroline and James to find a set of five integers that didn't include three that added up to a multiple of 3.

Can you find a set of five integers that doesn't include three integers that add up to a multiple of 3?

If not, can you provide a convincing argument that you can always find three integers that add up to a multiple of 3 ?

