A recurring decimal is a decimal with a digit, or group of digits, that repeats forever.
For example, $\frac{1}{3}=1 \div 3=0.333333 \ldots$ with the 3 s repeating forever.
We can write this as $0 . \dot{3}$.

Imagine I started with the number $x=0 . \dot{2}$
How could you write $2 . \dot{2}$ in terms of x ?
Can you find two different ways?

Can you create an equation, and then solve it to express x as a fraction?

Now let's consider $y=0.25252525 \ldots$, where the digits 2 and 5 keep alternating forever.

This can be written as $0 . \dot{2} \dot{5}$, with dots over the first and last digit in the repeating pattern.

How could you write $25 . \dot{2} \dot{5}$ in terms of y, in two different ways?

Can you create an equation, and then solve it to express y as a fraction?

Now try writing the following recurring decimals as fractions:

- $0 . \dot{4} 0 \dot{5}$
- 0.83
- $0.002 \dot{7}$

Can you describe a method that will allow you to express any recurring decimal as a fraction?

