

The ancient Egyptians didn't write fractions with a numerator greater than

1 - they wouldn't, for example, write $\frac{2}{7}$, $\frac{5}{9}$, $\frac{123}{467}$, ...

Instead they wrote fractions like these as a sum of **different** unit fractions.

There are several NRICH problems based on Egyptian fractions. The first, Keep it Simple (http://nrich.maths.org/6540), explores unit fractions.

In this problem we are going to start by considering how the Egyptians might have written fractions with a numerator of 2 (i.e. of the form $\frac{2}{n}$). For example,

 $\frac{2}{3} = \frac{1}{3} + \frac{1}{3}$ (but since these are the same, this wasn't allowed), or $\frac{2}{3} = \frac{1}{3} + \frac{1}{4} + \frac{1}{12}$, or $\frac{2}{3} = \frac{1}{3} + \frac{1}{5} + \frac{1}{20} + \frac{1}{12}$, or $\frac{2}{3} = \frac{1}{3} + \frac{1}{6} + \frac{1}{30} + \frac{1}{20} + \frac{1}{12}$, or $\frac{2}{3} = \frac{1}{4} + \frac{1}{12} + \frac{1}{7} + \frac{1}{42} + \frac{1}{31} + \frac{1}{930} + \frac{1}{21} + \frac{1}{420} + \frac{1}{13} + \frac{1}{156}$ and so on, and so on!!

You might want to check that these are correct.

BUT wouldn't it be simpler to write it as the sum of just <u>two</u> different unit fractions?

For $\frac{2}{3}$ that's quite easy, $\frac{2}{3} = \frac{1}{2} + \frac{1}{6}$

But is it always so easy? Try some other fractions with a numerator of 2. Can they also be written as the sum of just two different unit fractions?

Can all fractions with a numerator of 2 (i.e. of the form $\frac{2}{n}$) be written as the sum of just <u>two</u> different unit fractions?

Can you find an efficient method for doing this?

Next, you might want to explore fractions of the form $\frac{3}{n}$, $\frac{4}{n}$, $\frac{5}{n}$...

http://nrich.maths.org/1173 © University of Cambridge