If I gave you a list of decimals, you might find it quite straightforward to put them in order of size. But what about ordering fractions?

A man called John Farey investigated sequences of fractions in order of size - they are called Farey Sequences.

The third Farey Sequence, F_{3}, looks like this:

$$
\begin{array}{lllll}
\frac{0}{1} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{1}{1}
\end{array}
$$

It lists in order all the fractions between 0 and 1 , in their simplest forms, with denominators up to and including 3.

Here is F_{4} :

$$
\begin{array}{lllllll}
\frac{0}{1} & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} & \frac{2}{3} & \frac{3}{4} & \frac{1}{1}
\end{array}
$$

Write down F_{5}.

Which extra fractions are in F_{5} which weren't in F_{4} ? Which extra fractions will be in F_{6} that weren't in F_{5} ? Where will they appear in the sequence?

There are lots of questions you could explore about Farey Sequences. Here are just a few that we thought of:

- How many extra fractions are there in F_{11} that aren't in F_{10} ?
- How many extra fractions are there in F_{12} that aren't in F_{11} ?
- Is every Farey Sequence longer than the one before? How do you know?
- Is there a way of working out how many fractions there will be in the next sequence?
- So far, all the Farey Sequences except F_{1} have contained an odd number of fractions. Can you find a Farey Sequence with an even number of fractions?

