

If I gave you a list of decimals, you might find it quite straightforward to put them in order of size. But what about ordering fractions?

A man called John Farey investigated sequences of fractions in order of size - they are called Farey Sequences.

The third Farey Sequence, F_3 , looks like this:

0	1	1	2	1
$\overline{1}$	$\overline{3}$	$\overline{2}$	$\overline{3}$	$\overline{1}$

It lists in order all the fractions between 0 and 1, in their simplest forms, with denominators up to and including 3.

Here is *F*₄:

0	1	1	1	2	3	1
1	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{1}$

Write down *F*₅.

Which extra fractions are in F_5 which weren't in F_4 ? Which extra fractions will be in F_6 that weren't in F_5 ? Where will they appear in the sequence?

There are lots of questions you could explore about Farey Sequences. Here are just a few that we thought of:

- How many extra fractions are there in F_{11} that aren't in F_{10} ?
- How many extra fractions are there in F_{12} that aren't in F_{11} ?
- Is every Farey Sequence longer than the one before? How do you know?
- Is there a way of working out how many fractions there will be in the next sequence?
- So far, all the Farey Sequences except F_1 have contained an odd number of fractions. Can you find a Farey Sequence with an even number of fractions?