Rearrange these statements to form a proof about triangular and square numbers.

Hence, $8 k+1=4 n^{2}+4 n+1$
Suppose $8 k+1$ is a square number
Factorising the right hand side, $8 k=4 n(n+1)$

This is the general form for a triangular number. Therefore, if $8 k+1$ is square, k is triangular.

We wish to prove that if $8 k+1$ is a square number then k is a triangular number.

Simplifying, $k=\frac{1}{2} n(n+1)$
All odd squares are of the form $(2 n+1)^{2}=4 n^{2}+4 n+1$
Dividing both sides by $8, k=\frac{4 n(n+1)}{8}$
Subtracting 1 from both sides, $8 k=4 n^{2}+4 n$
Since $8 k$ is even, $8 k+1$ is odd

