Rearrange these statements to form a proof about triangular and square numbers.

Then $T=\frac{1}{2} n(n+1)$ for some whole number $n$.

Expanding, $8 T+1=4 n^{2}+4 n+1$

Let $T$ be a triangular number

Therefore, if $T$ is triangular, $8 T+1$ is square

We wish to prove that if $T$ is a triangular number then $8 T+1$ is a square number.

Simplifying, $8 T+1=4 n(n+1)+1$

Factorising the right hand side, $8 T+1=(2 n+1)^{2}$

Therefore $8 T+1=8\left(\frac{1}{2} n(n+1)\right)+1$

