IFF
A formula must be found for the $n^{t h}$ triangle number. Let the function $f: \mathbb{N} \rightarrow T$, where T is the set of all triangle numbers exist such that $f: n \mapsto T_{n}$, where T_{n} is the $n^{\text {th }}$ triangle number. Then

$$
\begin{gathered}
f: 1 \mapsto 1 \\
f: 2 \mapsto 3=1+2=1+(1+1) \\
f: 3 \mapsto 6=1+2+3=1+(1+1(1))+(1+2(1)) \\
f: n \mapsto \sum_{i=1}^{n} i
\end{gathered}
$$

We see that $\sum_{i=1}^{n} i$ forms an arithmetic sequence, with the first term being 1 , the last term being n and the number of terms being n. Therefore

$$
f: n \mapsto \sum_{i=1}^{n} i=\frac{n(n+1)}{2}
$$

From this, we see that

$$
\begin{aligned}
& 8[f(n)]+1 \\
= & \frac{8 n(n+1)}{2}+1 \\
= & 4 n(n+1)+1 \\
= & 4 n^{2}+4 n+1 \\
= & (2 n+1)^{2}
\end{aligned}
$$

To prove the second conjecture, if $8 n+1$ is a square number, then

$$
8 n+1=a^{2}
$$

and after rearrangement

$$
n=\frac{a^{2}-1}{8}
$$

$8 n+1$ can be written as $2(4 n)+1$ and since 4 and n are natural numbers and the set of natural numbers is closed under multiplication, $2(4 n)+1=2 M+1$, $M \in \mathbb{N}$, so $8 n+1$ is odd. Therefore, a^{2} is odd, and also a is odd, since only the product of two odd numbers yields an odd number. So $a=2 M+1$, then

$$
\begin{gathered}
n=\frac{(2 M+1)^{2}-1}{8} \\
n=\frac{4 M^{2}+4 M+1-1}{8} \\
n=\frac{4 M^{2}+4 M}{8} \\
n=\frac{4 M(M+1)}{8} \\
n=\frac{M(M+1)}{2}
\end{gathered}
$$

Thus, $8 n+1$ is a square number iff n is a triangle number
Another way of phrasing the above is if $8 n+1$ is a square number, n is a triangle number.
We can use this fact to test if numbers are triangle numbers. Multiply the number by 8 and add 1 to the result. Square root this result. If the final result is a natural number, then the original number was a triangle number. Using this method, 3655 and 7626 are triangle numbers.

