Nrich Solution for Two and Two (Sat Batch)

This task of Two and Two was taken for 2 sessions with a group of 15 students in Ganit Kreeda, Vicharvatika, India by
Shubhangee(facilitator).
The names of the students are:
Ahana, Ananthajith, Dhruv, Sehar, Saanvi, Nikhil, Insiya, Inaaya, Ishaan, Ishanvi, Sanat, Abhay, Karthik, Vishnuvardhan, Rudra

Kids together found out that:
ONE + TWO = THREE
Not possible, as two 3-digit numbers' sum cannot be 5 -digit.
ONE + THREE = FOUR
Not possible as one 3-digit number and one 5-digit number cannot be added to get 4-digit sum.

Karthik created one problem as a solution to:
Can you create other similar cryptarithms?

FOUR +FOUR	8532 +8532
EIGHT	

$R=2, T=4, U=3, H=6, O=5, G=0, E=1, F=8, I=7$
While experimenting with numbers, Vishnuvardhan realized that any addition problem can be converted as a subtraction problem in 2-ways.
TWO - ONE = ONE, NINE - FOUR = FIVE,
NINE - FIVE = FOUR
Kids shared different observations for
TWO
+TWO
FOUR

- R is always even, as $R=0+0$.
- O cannot be equal to $0 / 1 / 9$.
- F is always equal to 1 .

Ahana, Karthik and Inayaa worked on this in a breakout room to find all possible solutions along with the reason. Here is Ahana's work:

Ahana's work:
Some other cryptarithms are:

A cryptarithm subtraction is:

Abhay says that for TWO + TWO = FOUR....

The problem suggests that the addends have to be the same and above 500 and the ones digit of the addend and the hundredth digit of the sum have to be the same so I tried a trial and error method.

Anathajith, Sehar, Dhruv and Saanvi worked together and their work is summarized by Sehar here.

Here is Sehar's Work for ONE + ONE =TWO

Here is Sehar's Work for TWO + TWO = FOUR
page no. 4

* TWO There are only 6 opt + TWD which are:
FOUR

* Yes your can make ceresptaril
sulitroctime.

This is Sehar's reasoning for FOUR + FIVE = NINE
page no. 3
(5) Thereare 6 possibilities for $A, V, F, V, 0, R$ For each of these I has 4 possibili= ties and foe each I,E has 3 possibili ties.

$$
\begin{aligned}
\text { Total } & =6 \times 4 \times 3 \text { op ions } \\
& =72 \text { options }
\end{aligned}
$$

Kids used Sehar's reasoning and found out all possible solutions for:

I\& E can be exchanged among themselves. So, 12 diffnsolutions.
$R=0$ and $O=9$, U and V can be exchanged.
$\mathrm{F}<5$ and N is odd as $\mathrm{N}=\mathrm{F}+\mathrm{F}+1$

$\mathrm{N}=1$ $\mathrm{~F}=0$	$\mathrm{N}=3$ $\mathrm{~F}=1$	$\mathrm{N}=5$ $\mathrm{~F}=2$	$\mathrm{N}=7$ $\mathrm{~F}=3$	$\mathrm{N}=9$ $\mathrm{~F}=4$
Not possible. As starting digit cant be zero.	$\mathrm{U}=5, \mathrm{~V}=8$	$\mathrm{U}=7, \mathrm{~V}=8$	$\mathrm{U}=8, \mathrm{~V}=9$	Not possible as $\mathrm{U}+\mathrm{V}=19$ to is import using 2 digits.
	$\mathrm{U}=6, \mathrm{~V}=7$	$\mathrm{U}=8, \mathrm{~V}=7$	$\mathrm{U}=9, \mathrm{~V}=8$	
	$\mathrm{U}=7, \mathrm{~V}=6$			
	$\mathrm{U}=8, \mathrm{~V}=5$			
	4 solutions	2solutions	2solutions	

\therefore Total sol ns $=(4+2+2) \times 12=8 \times 12=96$ solutions.

Shubhangee found one new Cryptarithm problem as:

$$
\Rightarrow R=0
$$

Elan be anything other than 0 .
Fan also be anything other than 0 .
I cannot be smaller than 0 .

$$
\begin{array}{r}
2879 \\
-\quad 469 \\
\hline 2410
\end{array} \frac{2754}{-364} \begin{array}{r}
2390
\end{array}
$$

-These 2 are sample solutions.

