Cut out the pieces and rearrange into a coherent proof.

If I have three consecutive numbers, one of them must be a multiple of 3 .	$(p-1)(p+1)$ is a multiple of both 8 and 3 , so $(p-1)(p+1)$ is a multiple of 24 .
	p is an odd number, so $p-1$ and $p+1$ must both be multiples of 2 .
$(p-1)(p+1)$ is the product of a multiple of 2 and a multiple of 4 , so must be a multiple of 8 .	($p-1$) and ($p+1$) are consecutive even numbers so either ($p-1$) or ($p+1$) must be a multiple of 4.
($p-1$), p, and ($p+1$) are consecutive numbers.	Let p be a prime number greater than 3.
p is prime and greater than 3 so cannot be a multiple of 3.	Either ($p-1$) or $(p+1)$ must be a multiple of 3 , so the product $(p-1)(p+1)$ must also be a multiple of 3 .
The expression $p^{2}-1$ can be factorised as $(p-1)(p+1)$	Therefore for any prime number p greater than 3 , $\mathrm{p}^{2}-1$ is a multiple of 24 .

