### Knight's Swap

Swap the stars with the moons, using only knights' moves (as on a chess board). What is the smallest number of moves possible?

How could you put these three beads into bags? How many different ways can you do it? How could you record what you've done?

### How Do You See It?

Here are some short problems for you to try. Talk to your friends about how you work them out.

# Dice in a Corner

##### Stage: 2 Challenge Level:

Three dice are sitting in the corner with the simple rule that where two faces touch they must be the same numbers.
So, in the first picture above there are $3$'s at the bottom of the red dice and on the top of the middle green and there are $4$'s on the bottom of the green dice and the top of the white dice. The numbers on the seven faces that can be seen are then added and make $21$.

In the second picture above there are $4$'s at the left of the red dice and on the right of the green dice and there are $3$'s on the left of the green dice and the right of the white dice. The numbers on the seven faces that can be seen are then added and make $23$.

Use your own dice (you could use two or three or more...)
Now for a challenge -  arrange dice (using at least $2$ and up to as many as you like) in a line in the corner, so that the faces you can see add up to $18$ in as many ways as possible.