You may also like

problem icon

Areas and Ratios

Do you have enough information to work out the area of the shaded quadrilateral?

problem icon

Shape and Territory

If for any triangle ABC tan(A - B) + tan(B - C) + tan(C - A) = 0 what can you say about the triangle?

problem icon

Napoleon's Hat

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Mind Your Ps and Qs

Age 16 to 18 Short Challenge Level:

Leo, Lily, Pippa and Lewis from Fakenham College sent us this entertaining solution

We transferred the equations onto cards so we could move them about easily. Good idea!

These are the ones we got to match, then we coloured them in and added glitter.Glittery maths? Excellent idea .

$ x< 0 \Leftrightarrow x\int^x_0 ydy < 0$

$x=0 \Rightarrow \int^x_0 \cos y dy =0$

$0< x< 1\Rightarrow \cos(x/2)> \sin(x/2) $

$x> 2\Rightarrow x^3> 1 $

$x> 4\Rightarrow 2\int^{x^2}_0ydy> x^2$

$x=-2\Rightarrow |x|> 1$

$x=1\Rightarrow x^2+x-2=0 $

We didn't manage to get four of < => , but were pleased we got this :)

You should be pleased! This was good logical thinking. These seven were all correct, but there was a mistake in an eighth one you included: $x^2+4x+4 =0 \Rightarrow x> 1$. Can you see why?

The full solution that we obtained was

$x^3> 1 \Leftrightarrow x> 1$
$2\int^{x^2}_0ydy> x^2 \Leftrightarrow |x|> 1$
$x=-2 \Leftrightarrow x^2+4x+4 =0$
$x=1\Rightarrow x^2+x-2=0$
$0< x< 1 \Rightarrow \cos(x/2)> \sin(x/2)$
$x> 4\Rightarrow x> 2$
$x< 0 \Leftrightarrow x\int^x_0 ydy < 0$
$x=0 \Rightarrow \int^x_0 \cos y dy =0$