You may also like

problem icon

Overarch 2

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

problem icon


Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

problem icon

Maximum Flow

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

Circular Circuitry

Age 16 to 18 Challenge Level:


This problem involves circuits which feed back into themselves: The output of a gate can be traced through the circuit back into the input of the same gate! This can lead to all sorts of interesting behaviour, which will be explored in this problem. Please note that the gates here are not interactive: they are thought experiments .

What will happen when you switch on these circuits?

What will happen if you change the gates to different types?

The following two circuits have the same gates. Look carefully at the wires which are switched on. What do you notice? What do you think will happen when the switches are flicked on and then flicked off?

Can you create your own feedback circuits? Investigate their properties.

Click here for a poster of this problem.


A key concept in computing is that of random access memory : whilst computers logically process commands they are also able to store user inputs whilst a procedure is being followed. Memory is built using logic gate circuits which feed back into themselves. The most simple of these is the 'flip-flop' which you can read about in the Wikipedia article . The flip-flop is a device which has two different stable states, and can thus 'remember' if a switch has previously been flipped.