You may also like

problem icon


For this challenge, you'll need to play Got It! Can you explain the strategy for winning this game with any target?

problem icon

Is There a Theorem?

Draw a square. A second square of the same size slides around the first always maintaining contact and keeping the same orientation. How far does the dot travel?

problem icon

Card Trick 2

Can you explain how this card trick works?

Pick's Theorem

Stage: 3 Challenge Level: Challenge Level:1

* How many different figures can be described as $(4, 0)$?

* What do you notice about $(4,0)$ figures?

* Choose another particular value for $(p,i)$ and explore different shapes.

* Have you tried drawing shapes with the same area?

* What do you notice about those figures whose areas are the same?

* What ways are there of increasing the area by $1$ unit?

* Draw more figures; tabulate the information about their perimeter points ($p$), interior points ($i$) and their areas ($A$).