A cube is made from smaller cubes, 5 by 5 by 5, then some of those cubes are removed. Can you make the specified shapes, and what is the most and least number of cubes required ?

A visualisation problem in which you search for vectors which sum to zero from a jumble of arrows. Will your eyes be quicker than algebra?

A bicycle passes along a path and leaves some tracks. Is it possible to say which track was made by the front wheel and which by the back wheel?

Imagine a stack of numbered cards with one on top. Discard the top, put the next card to the bottom and repeat continuously. Can you predict the last card?

Investigate x to the power n plus 1 over x to the power n when x plus 1 over x equals 1.

This problem provides training in visualisation and representation of 3D shapes. You will need to imagine rotating cubes, squashing cubes and even superimposing cubes!

In this problem we see how many pieces we can cut a cube of cheese into using a limited number of slices. How many pieces will you be able to make?

Takes you through the systematic way in which you can begin to solve a mixed up Cubic Net. How close will you come to a solution?

Two by two matrices model the complex numbers and also the quaternion number system.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!