November 2001, Stage 4&5

Problems

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Novemberish

Stage: 4 Challenge Level: Challenge Level:1

a) A four digit number (in base 10) aabb is a perfect square. Discuss ways of systematically finding this number. (b) Prove that 11^{10}-1 is divisible by 100.

problem icon

Garfield's Proof

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Rotate a copy of the trapezium about the centre of the longest side of the blue triangle to make a square. Find the area of the square and then derive a formula for the area of the trapezium.

problem icon

Factoring a Million

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

In how many ways can the number 1 000 000 be expressed as the product of three positive integers?

problem icon

Reach for Polydron

Stage: 5 Challenge Level: Challenge Level:1

A tetrahedron has two identical equilateral triangles faces, of side length 1 unit. The other two faces are right angled isosceles triangles. Find the exact volume of the tetrahedron.

problem icon

Strange Rectangle

Stage: 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

ABCD is a rectangle and P, Q, R and S are moveable points on the edges dividing the edges in certain ratios. Strangely PQRS is always a cyclic quadrilateral and you can find the angles.