Can you work out which spinners were used to generate the frequency charts?

In this game the winner is the first to complete a row of three. Are some squares easier to land on than others?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Two brothers belong to a club with 10 members. Four are selected for a match. Find the probability that both brothers are selected.

Invent a set of three dice where each one is better than one of the others?

Which of these ideas about randomness are actually correct?

Can you generate a set of random results? Can you fool the random simulator?

This set of resources for teachers offers interactive environments to support probability work at Key Stage 4.

A bag contains red and blue balls. You are told the probabilities of drawing certain combinations of balls. Find how many red and how many blue balls there are in the bag.

Your partner chooses two beads and places them side by side behind a screen. What is the minimum number of guesses you would need to be sure of guessing the two beads and their positions?

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

The King showed the Princess a map of the maze and the Princess was allowed to decide which room she would wait in. She was not allowed to send a copy to her lover who would have to guess which path. . . .

You and I play a game involving successive throws of a fair coin. Suppose I pick HH and you pick TH. The coin is thrown repeatedly until we see either two heads in a row (I win) or a tail followed by. . . .