Annie and Ben are playing a game with a calculator. What was Annie's secret number?

If a sum invested gains 10% each year how long before it has doubled its value?

Where will the point stop after it has turned through 30 000 degrees? I took out my calculator and typed 30 000 ÷ 360. How did this help?

Which set of numbers that add to 10 have the largest product?

On my calculator I divided one whole number by another whole number and got the answer 3.125 If the numbers are both under 50, what are they?

$2\wedge 3\wedge 4$ could be $(2^3)^4$ or $2^{(3^4)}$. Does it make any difference? For both definitions, which is bigger: $r\wedge r\wedge r\wedge r\dots$ where the powers of $r$ go on for ever, or. . . .

Predict future weather using the probability that tomorrow is wet given today is wet and the probability that tomorrow is wet given that today is dry.

Investigate what happens if we create number patterns using some simple rules.

In this investigation, you are challenged to make mobile phone numbers which are easy to remember. What happens if you make a sequence adding 2 each time?

This challenge is a game for two players. Choose two numbers from the grid and multiply or divide, then mark your answer on the number line. Can you get four in a row before your partner?

Use the clocks to investigate French decimal time in this problem. Can you see how this time system worked?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Nowadays the calculator is very familiar to many of us. What did people do to save time working out more difficult problems before the calculator existed?

Clare Green looks at the role of the calculator in the teaching and learning of primary mathematics.

Tell your friends that you have a strange calculator that turns numbers backwards. What secret number do you have to enter to make 141 414 turn around?

Take the number 6 469 693 230 and divide it by the first ten prime numbers and you'll find the most beautiful, most magic of all numbers. What is it?

On a calculator, make 15 by using only the 2 key and any of the four operations keys. How many ways can you find to do it?

Find another number that is one short of a square number and when you double it and add 1, the result is also a square number.

Look on the back of any modern book and you will find an ISBN code. Take this code and calculate this sum in the way shown. Can you see what the answers always have in common?

Start with any triangle T1 and its inscribed circle. Draw the triangle T2 which has its vertices at the points of contact between the triangle T1 and its incircle. Now keep repeating this. . . .

Make a set of numbers that use all the digits from 1 to 9, once and once only. Add them up. The result is divisible by 9. Add each of the digits in the new number. What is their sum? Now try some. . . .

Write the numbers up to 64 in an interesting way so that the shape they make at the end is interesting, different, more exciting ... than just a square.

EWWNP means Exploring Wild and Wonderful Number Patterns Created by Yourself! Investigate what happens if we create number patterns using some simple rules.