Look at the calculus behind the simple act of a car going over a step.

Work in groups to try to create the best approximations to these physical quantities.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

See how the motion of the simple pendulum is not-so-simple after all.

At what positions and speeds can the bomb be dropped to destroy the dam?

Invent scenarios which would give rise to these probability density functions.

Why MUST these statistical statements probably be at least a little bit wrong?

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

chemNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of chemistry, designed to help develop the mathematics required to get the most from your study. . . .

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Fifth in our series of problems on population dynamics for advanced students.

Third in our series of problems on population dynamics for advanced students.

Sixth in our series of problems on population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Second in our series of problems on population dynamics for advanced students.

Fourth in our series of problems on population dynamics for advanced students.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Formulate and investigate a simple mathematical model for the design of a table mat.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

How do scores on dice and factors of polynomials relate to each other?

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

Bricks are 20cm long and 10cm high. How high could an arch be built without mortar on a flat horizontal surface, to overhang by 1 metre? How big an overhang is it possible to make like this?

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

A brief video explaining the idea of a mathematical knot.

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?