How do scores on dice and factors of polynomials relate to each other?

Sixth in our series of problems on population dynamics for advanced students.

Fifth in our series of problems on population dynamics for advanced students.

Fourth in our series of problems on population dynamics for advanced students.

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

Third in our series of problems on population dynamics for advanced students.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Invent scenarios which would give rise to these probability density functions.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

Second in our series of problems on population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

If a is the radius of the axle, b the radius of each ball-bearing, and c the radius of the hub, why does the number of ball bearings n determine the ratio c/a? Find a formula for c/a in terms of n.

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

A brief video explaining the idea of a mathematical knot.

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

Why MUST these statistical statements probably be at least a little bit wrong?

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Look at the calculus behind the simple act of a car going over a step.

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

Explain why, when moving heavy objects on rollers, the object moves twice as fast as the rollers. Try a similar experiment yourself.

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

At what positions and speeds can the bomb be dropped to destroy the dam?

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Two cyclists, practising on a track, pass each other at the starting line and go at constant speeds... Can you find lap times that are such that the cyclists will meet exactly half way round the. . . .

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

How many eggs should a bird lay to maximise the number of chicks that will hatch? An introduction to optimisation.

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?

Formulate and investigate a simple mathematical model for the design of a table mat.

Simple models which help us to investigate how epidemics grow and die out.