This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

Why MUST these statistical statements probably be at least a little bit wrong?

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

Invent scenarios which would give rise to these probability density functions.

At what positions and speeds can the bomb be dropped to destroy the dam?

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Look at the calculus behind the simple act of a car going over a step.

See how the motion of the simple pendulum is not-so-simple after all.

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Work in groups to try to create the best approximations to these physical quantities.

First in our series of problems on population dynamics for advanced students.

Mike and Monisha meet at the race track, which is 400m round. Just to make a point, Mike runs anticlockwise whilst Monisha runs clockwise. Where will they meet on their way around and will they ever. . . .

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

Second in our series of problems on population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

This article explains the concepts involved in scientific mathematical computing. It will be very useful and interesting to anyone interested in computer programming or mathematics.

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

Fifth in our series of problems on population dynamics for advanced students.

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

Third in our series of problems on population dynamics for advanced students.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

A brief video explaining the idea of a mathematical knot.

The shortest path between any two points on a snooker table is the straight line between them but what if the ball must bounce off one wall, or 2 walls, or 3 walls?

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and record your findings in truth tables.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

Sixth in our series of problems on population dynamics for advanced students.

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Fourth in our series of problems on population dynamics for advanced students.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

First of all, pick the number of times a week that you would like to eat chocolate. Multiply this number by 2...

Formulate and investigate a simple mathematical model for the design of a table mat.