Why MUST these statistical statements probably be at least a little bit wrong?

An article demonstrating mathematically how various physical modelling assumptions affect the solution to the seemingly simple problem of the projectile.

This is our collection of tasks on the mathematical theme of 'Population Dynamics' for advanced students and those interested in mathematical modelling.

At what positions and speeds can the bomb be dropped to destroy the dam?

Invent scenarios which would give rise to these probability density functions.

See how differential equations might be used to make a realistic model of a system containing predators and their prey.

The probability that a passenger books a flight and does not turn up is 0.05. For an aeroplane with 400 seats how many tickets can be sold so that only 1% of flights are over-booked?

Work in groups to try to create the best approximations to these physical quantities.

Look at the calculus behind the simple act of a car going over a step.

See how the motion of the simple pendulum is not-so-simple after all.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

A car is travelling along a dual carriageway at constant speed. Every 3 minutes a bus passes going in the opposite direction, while every 6 minutes a bus passes the car travelling in the same. . . .

Chris is enjoying a swim but needs to get back for lunch. If she can swim at 3 m/s and run at 7m/sec, how far along the bank should she land in order to get back as quickly as possible?

This problem opens a major sequence of activities on the mathematics of population dynamics for advanced students.

In four years 2001 to 2004 Arsenal have been drawn against Chelsea in the FA cup and have beaten Chelsea every time. What was the probability of this? Lots of fractions in the calculations!

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

First in our series of problems on population dynamics for advanced students.

engNRICH is the area of the stemNRICH Advanced site devoted to the mathematics underlying the study of engineering

bioNRICH is the area of the stemNRICH site devoted to the mathematics underlying the study of the biological sciences, designed to help develop the mathematics required to get the most from your. . . .

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

This is the section of stemNRICH devoted to the advanced applied mathematics underlying the study of the sciences at higher levels

Given the graph of a supply network and the maximum capacity for flow in each section find the maximum flow across the network.

PhysNRICH is the area of the StemNRICH site devoted to the mathematics underlying the study of physics

Fancy a game of cricket? Here is a mathematical version you can play indoors without breaking any windows.

How many eggs should a bird lay to maximise the number of chicks that will hatch? An introduction to optimisation.

Fourth in our series of problems on population dynamics for advanced students.

You have two bags, four red balls and four white balls. You must put all the balls in the bags although you are allowed to have one bag empty. How should you distribute the balls between the two. . . .

At Holborn underground station there is a very long escalator. Two people are in a hurry and so climb the escalator as it is moving upwards, thus adding their speed to that of the moving steps. . . .

How is the length of time between the birth of an animal and the birth of its great great ... great grandparent distributed?

The builders have dug a hole in the ground to be filled with concrete for the foundations of our garage. How many cubic metres of ready-mix concrete should the builders order to fill this hole to. . . .

A player has probability 0.4 of winning a single game. What is his probability of winning a 'best of 15 games' tournament?

Formulate and investigate a simple mathematical model for the design of a table mat.

Your school has been left a million pounds in the will of an ex- pupil. What model of investment and spending would you use in order to ensure the best return on the money?

This article for students introduces the idea of naming knots using numbers. You'll need some paper and something to write with handy!

A brief video explaining the idea of a mathematical knot.

Second in our series of problems on population dynamics for advanced students.

The third installment in our series on the shape of astronomical systems, this article explores galaxies and the universe beyond our solar system.

This is about a fiendishly difficult jigsaw and how to solve it using a computer program.

Fifth in our series of problems on population dynamics for advanced students.

In this article for teachers, Alan Parr looks at ways that mathematics teaching and learning can start from the useful and interesting things can we do with the subject, including. . . .

Third in our series of problems on population dynamics for advanced students.

To win on a scratch card you have to uncover three numbers that add up to more than fifteen. What is the probability of winning a prize?

An account of how mathematics is used in computer games including geometry, vectors, transformations, 3D graphics, graph theory and simulations.

An advanced mathematical exploration supporting our series of articles on population dynamics for advanced students.

Edward Wallace based his A Level Statistics Project on The Mean Game. Each picks 2 numbers. The winner is the player who picks a number closest to the mean of all the numbers picked.

Can you suggest a curve to fit some experimental data? Can you work out where the data might have come from?

Sixth in our series of problems on population dynamics for advanced students.

What shapes should Elly cut out to make a witch's hat? How can she make a taller hat?